GEOMORPHOLOGICAL APPROACH TO THE RIVER RUNOFF EVALUATION IN THE GEOLOGICAL PAST (Paper 2. Estimation of river palaeo-discharges based on channel hydraulics)
https://doi.org/10.15356/0435-4281-2017-2-3-13
Abstract
The methods of open channel hydraulics, designed to calculate the capacity of canals and river channels, can be used to determine the hydraulic and hydrological characteristics of ancient river channels. Large available empirical data allows calculations of channel capacity with an accuracy of 10–15%. The same accuracy is possible for the calculation of bankfull paleochannel discharge in the conditions of correct choice of the cross-section and the reconstruction of its morphometry: altitude of floodplain edges, paleochannel width at bankfull stage, average depth and surface slope of the flow. Morphometric characteristics of ancient channels and particle size distribution of alluvial deposits are obtained by detailed coring at channel cross-sections. In modern rivers, straight channel reaches without backwater effects, flow divergence or convergence are usually selected for the calculation of discharges with Chezy formula. Given that, coring of meandering paleochannels is rational to be organized at straight insertions between two adjacent bends. These reaches correspond to shallow crosses with low longitudinal and lateral flow non-uniformity and negligible backwater effects at high water levels.
The most reliable results can be obtained for the non-deformable (slightly deformable) paleochannels. The uncertainty in the estimation of ancient discharges increases significantly for deformable paleochannels. Changes in the paleochannel cross-section shape during its conservation, the uncertainty in the determination of textural contacts in alluvium and filling deposits, errors in determining of paleochannel slope lead to an increase in the total error of a palaeo-discharge estimate. The conversion from the bankfull discharge to a discharge of another frequency (i.e. to annual or mean maximum discharge) is processed with the help of empirical equations. This reduces significantly the accuracy of the calculations, since the empirical relationships are characterized by implicit errors, which are difficult to identify and reduce. Therefore, the accuracy of the hydraulic methods for estimating the annual discharge is about the same as that of the morphometric methods (regime equations), i.e. about 30–40%.
About the Authors
A. Yu. SidorchukRussian Federation
Faculty of Geography, Moscow
A. V. Panin
Russian Federation
Faculty of Geography, Moscow
References
1. Сидорчук А.Ю., Панин А.В. Геоморфологические подходы к оценке величины поверхностного стока в геологическом прошлом (ст. 1. Морфометрические зависимости) // Геоморфология. 2017. № 1. С. 55–65.
2. Железняков Г.В. Пропускная способность русел каналов и рек. Л.: Гидрометеоиздат, 1981. 311 с.
3. Dury G.H. Theoretical implications of underfit streams // US Geological Survey Professional Paper 452-B. 1965. 43 p.
4. Page K.J., Kemp J., and Nanson G.C.. Late Quaternary evolution of Riverine Plain paleochannels, Southeastern Australia // Australian Journal of Earth Sciences. 2009. Vol. 56. P. 19–33.
5. Rotnicki K. Retrodiction of palaeodischarges of meandering and sinuous rivers and its palaeoclimatic implications // Temperate Palaeohydrology. Chichester: John Wiley and Sons, 1991. P. 431–470.
6. Лелявский С. Введение в речную гидравлику. Л.: Гидрометеоиздат, 1961. 228 с.
7. Гангилле Е., Куттер В. Новая общая формула для однообразного движения воды в каналах и реках. СПб.: Типография МПС, 1882. 96 с.
8. Срибный М.Ф. Нормы сопротивления движению естественных водотоков и расчет отверстий больших мостов по способу бытовых морфологических характеристик. M.–Л.: Гострансиздат, 1932. 148 с.
9. Чоу В.Т. Гидравлика открытых каналов. М.: Стройиздат, 1969. 464 с.
10. Караушев А.В. Речная гидравлика. Л.: Гидрометеоиздат, 1969. 418 с.
11. Панин А.В., Сидорчук А.Ю., Баслеров С.В., Борисова О.К., Ковалюх Н.Н., Шеремецкая Е.Д. Основные этапы истории речных долин центра Русской равнины в позднем валдае и голоцене: результаты исследований в среднем течении р. Сейм // Геоморфология. 2001. № 2. С. 19–34.
12. http://www.fluvial-systems.net/geomorfologiya_2016/paper2_supplement.html
13. Панин А.В., Сидорчук А.Ю., Власов М.В. Мощный поздневалдайский речной сток в бассейне Дона // Изв. РАН. Сер. геогр. 2013. № 1. С. 118–129.
14. Sidorchuk A., Panin A., and Borisova O. Morphology of river channels and surface runoff in the Volga River basin (East European plain) during the Late Glacial period //Geomorphology. 2009. Vol. 113. No. 3–4. P. 137–157.
15. Sidorchuk A., Borisova O., Kovalukh N., and Panin A. Lateglacial and Holocene palaeohydrology of the lower Vychegda // River Basin Sediment Systems: Archives of Environmental Change. Amsterdam: Swets & Zeilinger B.V., 2001. P. 265–296.
16. Маккавеев Н.И. Русловой режим рек и трассирование прорезей. М.: Речиздат, 1949. 201 с.
17. Гришанин К.В. Гидравлическое сопротивление естественных русел. СПб.: Гидрометеоиздат, 1992. 182 с.
18. Baker V.R. Geomorphological understanding of floods // Geomorphology. 1994. No. 10. P. 139–156.
Review
For citations:
Sidorchuk A.Yu., Panin A.V. GEOMORPHOLOGICAL APPROACH TO THE RIVER RUNOFF EVALUATION IN THE GEOLOGICAL PAST (Paper 2. Estimation of river palaeo-discharges based on channel hydraulics). Geomorfologiya. 2017;(2):3-13. (In Russ.) https://doi.org/10.15356/0435-4281-2017-2-3-13