Preview

Geomorfologiya i Paleogeografiya

Advanced search

Denudation rates in the mountain periglacial regions: research methods and results

https://doi.org/10.31857/S0435428121010065

Abstract

Periglacial areas in the mountains are characterized by the highest denudation rates, which is due to active physical weathering, significant gradients and low projective vegetation coverage of the slopes of these areas. The accelerated expansion of periglacial areas that has taken place in recent decades is explained by climate changes that contribute to the melting of mountain glaciers. The improved methodology of studying the relief transformation processes, the rates of various exogenous processes, and the features of material redistribution along the pathways of sediment transportation from the slopes to the river valley bottoms contributed to a dramatic increase in quantitative assessment of spatio-temporal changes in the relief of the mountain periglacial zone. The article discusses various traditional and contemporary methods and approaches to studying the periglacial zone relief and its changes. They are divided into two groups: methods of stationary and semi-stationary observations of exogenous processes and methods for studying sediment redistribution in catchments. Various directions are highlighted within each group of methods, special attention is paid to the latest techniques. The results of observations of the rates of various exogenous processes occurring in the periglacial zone are generalized. It is shown that the intensity of rockfall-talus processes depends on lithology and frequency of daily air temperature fluctuation through zero °C and varies from 0.02 to 1.6 mm/year. Avalanche abrasion in avalanche trays reaches 40–70 mm/year. The rate depends on the area of the slope catchment, within which avalanches descend, and corresponds to the rate of denudation for the slope catchment equal to 0.01–0.05 mm/year. Maximum soil erosion rates are typical for young moraine slopes, where it reaches 100 mm/year in the first years after the glacier melts, and after 50 years slows down to 7–10 mm/year. The main flux of sediments is delivered from the slopes to the river bottoms by occasionally formed mudflows.

About the Authors

S. V. Kharchenko
Lomonosov Moscow State University; Institute of Geography RAS
Russian Federation

Faculty of Geography, Moscow



A. V. Fedin
Institute of Geography RAS
Russian Federation

Moscow



V. N. Golosov
Lomonosov Moscow State University; Institute of Geography RAS
Russian Federation

Faculty of Geography, Moscow



References

1. Timofeev D.A. and Vtiurina E.A. Terminologiya periglyacial’noi geomorfologii. (Terminology of the periglacial geomorphology.). M.: Nauka (Publ.), 1983. 232 p. (in Russ.)

2. Carrivick J.L., Heckmann T., Fischer M., and Davies B. An inventory of proglacial systems in Austria, Switzerland and across Patagonia. T. Heckmann and D. Morche (Eds.). Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Springer, 2018. P. 43–57.

3. Porter P.R., Smart M.J., and Irvine-Fynn T.D.L. Glacial sediment stores and their reworking. T. Heckmann and D. Morche (Eds.). Geomorphology of proglacial systems. Landform and sediment dynamics in recently deglaciated alpine landscapes. Springer, 2018. P. 157–176.

4. Church M. and Ryder J. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. GSA Bulletin. 1972. Vol. 83. No. 10. P. 3059–3072.

5. Ballantyne C.K. A general model of paraglacial landscape response. Holocene. 2002. Vol. 12. P. 371–376.

6. Ballantyne C.K. Paraglacial geomorphology. Quaternary Science Reviews. 2002. Vol. 21. P. 1935–2017.

7. Ananev G.S. Stacionarnye issledovaniya geomorfologicheskih processov na territorii byvshego SSSR. (Stationary studies of geomorphologic processes in the former USSR territory). Geomorfologiya (Geomorphology RAS). 1992. No. 4. P. 33–41. (in Russ.)

8. Nikulin F.V., Khmeleva N.V., and Shevchenko B.F. Ob izuchenii dvizheniya osypi fotogrammetricheskim metodom (On the study of the movement of rock waste by a photogrammetric method. Geomorfologiya (Geomorphology RAS). 1971. No. 1. P. 103–110. (in Russ.)

9. Khmeleva N.V. and Shevchenko B.F. Rezul’taty 25-letnih nablyudenij osypi v doline r. Zhoekvara (Abhaziya). (25-year observations data of a scree slope in the Joekvara valley (Abkhazia)). Geomorfologiya (Geomorphology RAS). 1992. No. 1. P. 96–102. (in Russ.)

10. Cameron N. Arduino Applied. Apress. 2019. 552 p. https://www.apress.com/gp/book/9781484239599

11. Titova Z.A. Rol’ ploskostnogo smyva i regressivnoi erozii v rel’efoobrazovanii stepnogo Zabaikal’ya. (The role of sheet and regressive erosion in relief formation of Transbaikalia steppe). Regional’naya geomorfologiya Sibiri. Irkutsk: In-t geografii Sibiri i Dal’nego Vostoka SO AN SSSR (Publ.), 1973. P. 3–19. (in Russ.)

12. Klyukin A.A. and Tolstyh E.A. Metodika i pervye rezul’taty stacionarnyh nablyudenij za skorost’yu denudacii izvestnyakovyh obryvov v Gornom Krymu. (Methods and first results of stationary observations over the rate of denudation of limestone precipices in the Mountain Crimea). Geomorfologiya (Geomorphology RAS). 1973. No. 4. P. 43–50. (in Russ.)

13. Goudie A. Geomorphological Techniques. 2nd edition. Routledge, 1990. 709 p.

14. Antonov S.I. and Golosov V.N. Osobennosti ispol’zovaniya balansovogo podhoda pri stacionarnyh issledovaniyah sovremennyh geomorfologicheskih processov v rechnom basseine. (Budget methods applied to stationary studies of present-day geomorphic processes in a drainage basin). Geomorfologiya (Geomorphology RAS). 1994. No. 2. P. 63–71. (in Russ.)

15. Smith H.T.U. Aerial photographs in geomorphic studies. Photogrammetric Engineering & Remote Sensing. 1942. Vol. 8. No. 2. P. 129–155.

16. Azbukina E.N. Deshifrirovanie aerofotosnimkov dlya geomorfologicheskih issledovanij. (Aerial image interpretations for geomorphological studies). L.: LGU (Publ.), 1969. 64 p. (in Russ.)

17. McDowell P.F. Geomorphology in the late twentieth century. Shroder J., Orme A.R. and Sack D. (Eds.). Treatise on Geomorphology. San Diego, CA: Academic Press, 2013. Vol. 1. The Foundations of Geomorphology. P. 108–123.

18. Hughes M., McDowell P.F., and Marcus W. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology. 2006. Vol. 74. No. 1. P. 1–16.

19. Kääb A. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and remote sensing. 2002. Vol. 57. No. 1–2. P. 39–52.

20. Paine D.P. and Kiser J.D. Aerial Photography and Image Interpretation. 3rd Edition. Hobuken: John Wiley & Sons, 2012. 656 p.

21. Kääb A., Haeberli W., and Gudmundsson G.H. Analyzing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben roch glacier, Swiss Alps. Permafrost and Periglacial Processes. 1997. Vol. 8. No. 4. P. 409–426.

22. Delaloye R., Lambiel C., Lugon R., Raetzo H., and Strozzi T. ERS InSAR for detecting slope movement in a periglacial mountain environment (western Valais Alps, Switzerland). Proceedings HMRSC-IX, Grazer Schriften der Geographie und Raumforschung. 2007. Vol. 43. P. 113–120.

23. Teshebaeva K., Echtler H., Bookhagen B., and Strecker M. Deep-seated gravitational slope deformation (DSGSD) and slow-moving landslides in the southern Tien Shan Mountains: new insights from In-SAR, tectonic and geomorphic analysis. Earth surface processes and landforms. 2019. Vol. 44. No. 12. P. 2333–2348.

24. Barboux C., Delaloye R., and Lambiel C. Inventorying slope movements in an Alpine environment using DInSAR. Earth surface processes and landforms. 2014. Vol. 39. No. 15. P. 2087–2099.

25. Barboux C., Delaloye R., Lambiel C., Strozzi T., Collet C., and Raetzo H. Surveying the activity of permafrost landforms in the Valais Alps with InSAR. Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft. 2012. P. 7–19.

26. Smith L.C., Alsdorf D.E., Magilligan F.J., Gomez B., Mertes L.A., Smith N.D., and Garvin J.B. Estimation of erosion, deposition, and net volumetric change caused by the 1996 Skeiðarársandur jökulhlaup, Iceland, from synthetic aperture radar interferometry. Water Resour. Res. 2000. No. 36. P. 1583–1594.

27. Gomez B., Russell A.J., Smith L.C., and Knudsen O. Erosion and deposition in the proglacial zone: the 1996 jökulhlaup on Skeidarársandur, southeast Iceland. The Extremes of the Extremes: Extraordinary Floods. IAHS Publication. 2002. Vol. 271. P. 217–221.

28. Strozzi T., Kääb A., and Frauenfelder R. Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry. International Journal of Remote Sensing. 2004. No. 25. P. 2919–2931.

29. Eriksen H.Ø., Lauknes T.R., Larsen Y., Dehls J.F., Grydeland T., and Bunkholt H. Satellite and Ground-Based Interferometric Radar Observations of an active rockslide in Northern Norway. Engineering Geology for Society and Territory. Vol. 5. 2015. P. 167–170.

30. Baewert H., Rascher E., and Morche D. Detecting surface changes of glaciofluvial deposits in an alpine proglacial area using terrestrial laser scanning. EGU General Assembly Conference Abstracts. 2013. Vol. 15. P. 9925.

31. Heckmann T., Haas F., Morche D., Schmidt K., Rohn J., Moser M., Leopold M., Kuhn M., Briese C., Pfeifer N., and Becht M. Investigating an Alpine proglacial sediment budget using field measurements, airborne and terrestrial LiDAR data. IAHS Publication. 2012. Vol. 356. P. 438–447.

32. Fonstad M.A., Dietrich J.T., Courville B.C., Jensen J.L., and Carbonneau P.E. Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and landforms. 2013. Vol. 38. No. 4. P. 421–430.

33. Wang D. and Kääb A. Modeling glacier elevation change from DEM time series. Remote Sensing. 2015. Vol. 7. No. 8. P. 10117–10142.

34. Schiefer E. and Gilbert R. Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology. 2007. Vol. 88. No. 1–2. P. 167–178.

35. Trofimov A.M. Matematicheskoe modelirovanie v geomorfologii sklonov. (Mathematical modeling in slope geomorphology). Kazan’: Izd-vo Kazan. un-ta (Publ.), 1983. 218 p. (in Russ.)

36. Schindewolf M., Kaiser A., Neugirg F., Richter C., Haas F., and Schmidt J. Seasonal erosion patterns under alpine conditions: benefits and challenges of a novel approach in physically based soil erosion modeling. Zeitschrift für Geomorphologie, Supplementary Issues. 2016. Vol. 60. No. 1. P. 109–123.

37. Heckmann T. Hilger L., Vehling L., and Becht M. Integrating field measurements, a geomorphological map and stochastic modelling to estimate the spatially distributed rockfall sediment budget of the Upper Kaunertal, Austrian Central Alps. Geomorphology. 2016. Vol. 260. P. 16–31.

38. Cavalli M., Trevisani S., Comiti F., and Marchi L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology. 2013. Vol. 188. P. 31–41.

39. Micheletti N., Lambiel C., and Lane S.N. Investigating decadal-scale geomorphic dynamics in an alpine mountain setting. Geophysical Research: Earth Surface. 2015. Vol. 120. P. 2155–2175.

40. Rainato R., Picco L., Cavalli M., Mao L., Neverman A., and Tarolli P. Coupling climate conditions, sediment sources and sediment transport in an alpine basin. Land Degradation and Development. 2018. Vol. 29. No. 4. P. 1154–1166.

41. Ewertowski M.W., Tomczyk, A.M., Evans D.J.A., Roberts D.H., and Ewertowski W. Operational Framework for Rapid, Very-high Resolution Mapping of Glacial Geomorphology Using Low-cost Unmanned Aerial Vehicles and Structure-from-Motion Approach. Remote Sensing. 2019. Vol. 11. P. 65.

42. Hilger L. Quantification and regionalization of geomorphic processes using spatial models and high-resolution topographic data: a sediment budget of the Upper Kauner Valley, Ötztal Alps. Doctoral Dissertation Cath. University of Eichstaett-Ingolstadt. 2017. 278 p. https://opus4.kobv.de/opus4-ku-eichstaett/files/381/fertig_pdf_a-1b.pdf

43. Messenzehl K., Hoffmann T. and Dikau R. Sediment connectivity in the high-alpine valley of Val Muschauns, Swiss National Park – linking geomorphic field mapping with geomorphometric modelling. Geomorphology. 2014. Vol. 221. P. 215–229.

44. Theler D., Reynard E., Lambiel C., and Bardou E. The contribution of geomorphological mapping to sediment transfer evaluation in small alpine catchments. Geomorphology. 2010. Vol. 124. No. 3–4. P. 113–123.

45. Laute K. and Beylich A.A. Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology. 2014. Vol. 216. P. 93–113.

46. Ardelean A.C., Onaca A., Urdea P. and Sărășan A. Quantifying postglacial sediment storage and denudation rates in a small alpine catchment of the Făgăraș Mountains (Romania). Science of the Total Environment. 2017. Vol. 599. P. 1756–1767.

47. Geilhausen M., Otto J.C., and Schrott L. Spatial distribution of sediment storage types in two glacier landsystems (Pasterze and Obersulzbachkees, Hohe Tauern, Austria). Journal of Maps. 2012. 8. P. 242–259.

48. Vehling L., Rohn J., and Moser M. Rockfall at Proglacial Rockwalls — A Case Study from the Kaunertal, Austria. Geomorphology of Proglacial Systems. Springer, 2019. P. 143–156.

49. Golosov V.N. and Panin A.V. Osypnye processy na sklonah ovragov v nizkogornoi zone Zapadnogo Tyan’-Shanya (Scree processes at gullies’ slopes in the Western Tien-Shan low mountain. Geomorfologiya (Geomorphology RAS). 1988. No. 3. P. 46–50. (in Russ.) https://istina.msu.ru/publications/article/1751737/

50. Moore J.R., Sanders J.W., Dietrich W.E., and Glaser S.D. Influence of rock mass strength on the erosion rate of alpine cliffs. Earth surface processes and landforms. 2009. Vol. 34. P. 1339–1352.

51. Matsuoka N. and Sakai H. Rockfall activity from an alpine cliff during thawing periods. Geomorphology. 1999. Vol. 28. P. 309–328.

52. Hales T.C. and Roering J.J. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Geophysical Research. 2007. Vol. 112. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2006JF000616

53. Sass O., Hoinkis R. and Wetzel K.F. A six-year record of debris transport by avalanches on a wildfire slope (Arnspitze, Tyrol). Geomorphology. 2010. Vol. 54. P. 181–193.

54. Moore J.R., Egloff J., Nagelisen J., Hunziker M., Aerne U., and Christen M. Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland. Arctic, Antarctic, and Alpine research. 2013. Vol. 45. P. 350–362.

55. Dusik J., Neugirg F., and Haas F. Slope wash, gully erosion and debris flows on lateral moraines in the Upper Kaunertal, Austria. T. Heckmann and D. Morche (Eds.). Landform and sediment dynamics in recently deglaciated Alpine landscapes. Springer, 2018. P. 177–198.

56. Curry A.M., Cleasby V., and Zukowskyj P. Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. Quaternary Science Reviews. 2006. Vol. 12. No. 3. P. 211–225.

57. Curry A.M. Paraglacial modification of slope form. Earth surface processes and landforms. 1999. Vol. 24. P. 1213–1228.

58. Tsyplenkov A., Vanmaercke M., Chalov S., and Golosov V. Suspended sediment budget and intra-event sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus. Journal of Soils and Sediments. 2020. Vol. 20. P. 3266–3281. https://doi.org/10.1007/s11368-020-02633-z

59. Azhigirov A.A. and Golosov V.N. Ocenka medlennogo smeshcheniya pochvenno-gruntovyh mass pri inzhenernogeograficheskih issledovaniyah (Slow mass movement assessment in engineering-geographic studies). Geomorfologiya (Geomorphology RAS). 1990. No. 1. P. 33–40. (in Russ.)

60. Gorbunov A.P. and Seversky E.V. Solifluction in the mountains of Central Asia: distribution, morphology, processes. Permafrost and periglacial processes. 1999. Vol. 10. P. 81–89.

61. Matsuoka N. Solifluction and mudflow on a limestone periglacial slope in the Swiss Alps: 14 years of monitoring. Permafrost and periglacial processes. 2010. Vol. 21. P. 219–240.

62. Beylich A.A. Geomorphology, sediment budget, and relief development in Austdalur, Austfirðir, East Iceland. Arctic, Antarctic, and Alpine research. 2000. Vol. 32. No. 4. P. 466–477.

63. Beylich A.A. and Laute K. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology. 2015. Vol. 228. P. 552–567.

64. Fryirs K. and Brierley G.J. Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology. 2001. Vol. 38. P. 237–265.

65. Heckmann T. and Vericat D. Computing spatially distributed sediment delivery ratios: inferring functional sediment connectivity from repeat high-resolution Digital Elevation Models. Earth surface processes and landforms. 2018. Vol. 43. P. 1547–1554.

66. Walling D.E. The sediment delivery problem. Hydrobiology. 1983. Vol. 65. P. 209–237.

67. Golosov V.N. Kolichestvennaya ocenka pereraspredeleniya nanosov v verhnih zven’yah flyuvial’noi seti: dostizheniya i problemy (A quantitative assessment of deposits' redistribution in the upper links of fluvial network: achievements and problems). Geomorfologiya (Geomorphology RAS). 2008. No. 3. P. 29–37. (in Russ.)

68. Borselli L., Cassi P., and Torri D. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena. 2008. Vol. 75. P. 268–277. https://doi.org/10.1016/j.catena.2008.07.006

69. Heckmann T. and Schwanghart W. Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory. Geomorphology. 2013. Vol. 182. P. 89–103.

70. Warburton J. An alpine proglacial fluvial sediment budget. Geografiska Annaler. Series A. 1990. Vol. 72. No. 3–4. P. 261–272.


Review

For citations:


Kharchenko S.V., Fedin A.V., Golosov V.N. Denudation rates in the mountain periglacial regions: research methods and results. Geomorfologiya. 2021;52(1):3-18. (In Russ.) https://doi.org/10.31857/S0435428121010065

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)