Preview

Geomorfologiya i Paleogeografiya

Advanced search

Patterns of the slope drainage network of the permafrost in the area of Anadyr

https://doi.org/10.31857/S0435428121010132

Abstract

Water runoff on the slopes of the permafrost zone passes through a network of hollows of various structures and patterns in plan. This is clearly distinguishable on aerial and satellite images, but often poorly distinguished on the ground. The study is aimed at recognizing the reasons for the difference in the structure of the drainage network, which is necessary for understanding the mechanisms of surface runoff generation and the modern relief formation in the permafrost areas. In the vicinity of Anadyr (Chukotka, Russia), three morphological types of the hollow network were identified. In the areas of distribution of each type of hollow network field observations were made, and the morphometric characteristics of the slopes to which they are associated were obtained from the digital surface model and satellite images. Each type of the hollow network corresponds to definite range of altitude, the type of relief, the slope gradient and profile, the composition of the deposits, and the depth of seasonal thawing. It has been established that although all types of troughs are used by temporary streams, they have different mechanisms of development. The hollows with a fan structure form the densest parallel network with a distance of 10–40 m apart. These are characteristic of concave slopes of interfluves with close bedding of bedrock and are the result of fluvial modeling of irregularities formed as a result of uneven sliding of the slope material (gelifluction). The intertwining troughs are confined to the slopes of the volcanic hills, the steepest of the studied ones. Fresh silty sediments have been observed at their bottoms and their formation is associated with erosional processes. Single hollows located at a considerable (200–300 m) distance from each other are formed in loose quaternary deposits with a developed network of ice-wedge-polygons. The role of thermokarst is significant in their deepening.

About the Authors

A. M. Tarbeeva
Lomonosov Moscow State University
Russian Federation

Faculty of Geography, Moscow



O. D. Tregubov
North-East Interdisciplinary Scientific Research Institute, Far East Branch of RAS
Russian Federation

Magadan



L. S. Lebedeva
Melnikov Permafrost Institute RAS
Russian Federation

Yakutsk



References

1. Mitt K.L. K voprosu o prirode dellei Daaldynskogo raiona. (On the nature of dells in the Daldyn diamond region). Voprosy geografii. 1959. Vyp. 46. P. 28–34. (in Russ.)

2. Kane D.L., Hinzman L.D., Benson C.S., and Liston G.E. Snow hydrology of a headwater Arctic basin. Water Resources Research. 1991. Vol. 27. No. 6. P. 1099–1109.

3. McNamara J.P., Kane D.L., and Hinzman L.D. An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach. Journal of Hydrology. 1998. No. 206. P. 39–57.

4. Chetyrekh’yazychnyi entsiklopedicheskii slovar' terminov po fizicheskoi geografii. (The four-language encyclopedic dictionary of terms in physical geography). Sost. I.S. Shchukin. M.: Sovetskaya entsiklopediya (Publ.), 1980. 703 p. (in Russ.)

5. Eremenko E.A. and Panin A.V. Lozhbinnyi mezorel’ef Vostochno-Evropeiskoi ravniny. (Hollow mesorelief of the East European plain). M.: MIROS (Publ.), 2010. 192 p. (in Russ.)

6. Katasonova E.G. Rol’ termokarsta v razvitii dellei. (The role of thermokarst in the development of dells). Usloviya i osobennosti razvitiya merzlyh tolshch v Sibiri i na Severo-Vostoke. M.: Izd-vo AN SSSR (Publ.), 1963. P. 91–100. (in Russ.)

7. Voskresenskii S.S. Dinamicheskaya geomorfologiya. Formirovanie sklonov. (Dynamic geomorphology. The formation of slopes.). M.: MGU (Publ.), 1971. 230 p. (in Russ.)

8. Hall K. Zoological erosion in permafrost environments: A possible origin of dells? Polar Geography. 1997. No. 21:1. P. 1–9.

9. McNamara J.P., Kane D.L., and Hinzman L.D. An analysis of an Arctic channel network using a digital elevation model. Geomorphology. 1999. No. 29. P. 339–353.

10. Trochim E.D., Jorgenson M.T., Prakash A., and Kane D.L. Geomorphic and biophysical factors affecting water tracks in northern Alaska. Earth and Space Science. 2016. No. 3. P. 123–141.

11. Tarbeeva A., Lebedeva L., Efremov V., Shamov V., and Makarieva O. Water tracks in the lower Lena River basin. E3S Web of Conferences, 163:04007, 2020. https://doi.org/10.1051/e3sconf/202016304007

12. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Karta chetvertichnykh obrazovanii. Masshtab 1:1000000 (tret’e pokolenie). Seriya Chukotskaya. List Q-60 – Anadyr’. (State geological map of the Russian Federation. Quaternary sediments. Scale 1:1000000 (third generation. A Series of Chukotka. Sheet Q-60-Anadyr.). SPb: Kartograficheskaya fabrika VSEGEI (Publ.), 2016.

13. Spravochno-informatsionnyi portal “Pogoda i klimat”. Anadyr’ [Elektronnyi resurs]. (Reference and information portal “Weather and climate”. Anadyr [Electronic source]). URL: http://www.pogodaiklimat.ru/climate/25563.htm [accessed on 20.03.2020] (in Russ.)

14. Zamolodchikov D.G., Kotov A.N., Karelin D.V., and Razzhivin V.Y. Active-Layer Monitoring in Northeast Russia: Spatial, Seasonal, and Interannual Variability. Polar Geography. 2004. Vol. 28. No. 4. P. 286–307.

15. GoogleEarth [Electronic source]. URL: https://www.google.com/earth/ [accessed on 30.10.19].

16. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M.J., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., and Bojesen M. ArcticDEM [Electronic source]. URL: https://doi.org/10.7910/DVN/OHHUKH, Harvard Dataverse, V1, 2018 [accessed on 30.10.19].

17. Hopkins D., Karlstrom T., Black R., Williams J.R., Pewe T.L., Fernald A.T., and Muller E.H. Permafrost and ground water in Alaska. Geol. Surv., Prof. Pap. 264 F. Washington, 1955. 146 p.

18. Liljedahl, A.K., Boike J., Daanen R.P., Fedorov A.N., Frost G.V., Grosse G., Hinzman L.D., Iijma Y., Jorgenson J.C., Matveyeva N., Necsoiu M., Raynolds M.K., Romanovsky V., Schulla J., Tape K.D., Walker D.A., Wilson C., Yabuki H., and Zona D. Pan-Arctic icewedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience. 2016. No. 9. P. 312–318.


Review

For citations:


Tarbeeva A.M., Tregubov O.D., Lebedeva L.S. Patterns of the slope drainage network of the permafrost in the area of Anadyr. Geomorfologiya. 2021;52(1):109-120. (In Russ.) https://doi.org/10.31857/S0435428121010132

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)