Preview

Geomorfologiya i Paleogeografiya

Advanced search

The origin of giant dunes in the Kuray Basin (South-Eastern Altai) based on morphometric analyses and GPR studies

https://doi.org/10.31857/S0435428122040034

Abstract

New data on the mechanism of giant dunes formation in the Kuray Basin of the Gorny Altai has been obtained in the Kuray dune field on the right bank of the Tjute River. We analyzed its morphology from remote sensing data (satellite images and UAV) and the internal structure of dunes with ground-penetrating radar. The morphometric indices: dune lengths and distribution of special points of the Kurai dune field were statistically compared with indices for dune landscapes of different genesis: cata-fluvial dune field near Lake Missoula (USA), ribbed moraine in southern Scandinavia, Baer knolls of Northern Pre-Caspian, Yenisei flood ridges, riverbed ridges of Tapi River, India, and erosion patterns of Loess plateau in China. In terms of the statistical distribution of morphometric parameters, the Kuray dune field is close to the dune fields formed by water streams and strikingly different from moraine and erosional landscapes. Their internal structure, which was determined by ground-penetrating radar data, is also typical of channel dunes on river beds:
one or more oblique-layered strata with a dip in the stream flow direction are unambiguously identified in the cross-sections. The results obtained allow us to finally confirm ridge formation to be a result of a powerful water flow apparently formed by the descent of a subglacial lake occupying the Kuray Basin. New details of the dune formation mechanism have been established. The relationship between dunes' size, internal structure and the altitudinal position at the bottom of the basin, points to the dependence of their formation on the depth of the flow. At shallower depths (southern part of the Kuray dune field), small dunes composed of a single laminated package (one pulse of motion) were formed; at greater depths (the northern part), large ridges composed of several laminated packages (several pulses of motion) were formed. The height difference between the southern and northern periphery of the dune field is about 80 m. For the difference less than 80 m to be significant for the dune formation, the average flow depth should not have exceeded 200–300 m, i.e. dune formation occurred closer to the end of the lake descent. Our study for the first time establishes the presence of packages with the reverse direction of layering within large dunes in the northern part of filed.
This fact indicates the possibility of reversible flow movement at the final stage of dune field formation. This
indicates an increase in the instability of the current, the appearance of its rapid multidirectional pulsations
at the last stage of lake drainage.

About the Authors

S. S. Bricheva
Lomonosov Moscow State University, Faculty of Geology, Moscow, Russia; Institute of Geography RAS, Moscow, Russia; Novosibirsk State University, Novosibirsk, Russia
Russian Federation


T. V. Gonikov
Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia
Russian Federation


A. V. Panin
Institute of Geography RAS, Moscow, Russia
Russian Federation


E. V. Deev
Novosibirsk State University, Novosibirsk, Russia; Trofimuk Institute of Petroleum Geology and Geophysics, SB of RAS, Novosibirsk, Russia
Russian Federation


V. M. Matasov
RUDN University, Moscow, Russia; National Research University “Higher School of Economics” (HSE), Moscow, Russia
Russian Federation


M. M. Doroshenkov
Institute of Geography RAS, Moscow, Russia; Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia
Russian Federation


A. L. Entin
Institute of Geography RAS, Moscow, Russia; Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia


D. M. Lobacheva
Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia
Russian Federation


References

1. Agatova A.R., Nepop R.K., Carling P.A., Bohorquez P., Khazin L.B., Zhdanova A.N., and Moska P. Last ice-dammed lake in the Kuray basin, Russian Altai: New results from multidisciplinary research. Earth Science Reviews. 2020. Vol. 203. https://doi.org/10.1016/j.earscirev.2020.103183

2. Baryshnikov G.Ya. Razvitie rel’efa perekhodnykh zon gornykh stran v kainozoe (na primere Gornogo Altaya) (The development of the relief of the transition zones of mountainous countries in the Cenozoic (using the example of the Altai Mountains)). Tomsk: TSU (Publ.), 1992. 182 p. (in Russ.)

3. Bjornstad B.N. Ice Age Floodscapes of the Pacific North-west. Springer International Publishing. 2021. 180 p.

4. Bohorquez P., Carling P.A., and Herget J. Dynamic simulation of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia. International Geology Reviews. 2016. 58. P. 1795–1817.https://doi.org/10.1080/00206814.2015.1046956

5. Bohorquez P., Jimenez-Rui P.J., and Carling P.A. Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, Central Asia. Earth-Science Reviews. 2019. Vol. 197. https://doi.org/10.1016/j.earscirev.2019.102892

6. Borisov B.A. and Minina E.A. Glacial deposits of the Altai-Sayan glacial region. Chronology of Pleistocene and climatical stratigraphy: For the IX-th Congress of INQUA, New Zeeland. Leningrad: Geographic Society of USSR (Publ.), 1973. P. 140–148. (in Russ.)

7. Borisov B.A. and Minina E.A. On the hypothesis of catastrophic glacial floods in the Altai-Sayan region in the context of geological and geomorphological data. Vseros. soveshch. “Glavneishie itogi v izuchenii chetv. perioda i osnovnye napravleniya issledovanii v XXI veke”. SPb: VSEGEI (Publ.), 1998. P. 90–91. (in Russ.)

8. Borodavko P.S. Evolyutsiya Chyuisko-Kuraiskoi limnosistemy v pozdnem neopleistotsene (Evolution of the Chuya-Kurai limnosystem in the Late Pleistocene). PhD Thesis. Tomsk: TGU (Publ.), 2003. 22 p. (in Russ.)

9. Botha G.A., Bristow C.S., Porat N., Duller G., Armitage S.J., Roberts H.M., Clarke B.M., Kota M.W., and Schoeman P. Evidence for dune reactivation from GPR profiles on the Maputaland coastal plain, South Africa. Ground penetrating radar in sediments. London. Geological Society Special Publications. 2003. No. 211. P. 29–46. https://doi.org/10.1144/GSL.SP.2001.211.01.03

10. Bristow C.S. and Jol H.M. (Eds.). Ground Penetrating Radar in Sediments. London: Geological Society Special Publications. 2003. No. 211. 330 p.

11. Butvilovskii V.V. Catastrophic releases of waters of glacial lakes of the south-eastern Altai and their traces in relief. Geomorfologiya. 1985. No. 1. P. 65–74. (in Russ.)

12. Butvilovskii V.V. Paleogeografiya poslednego oledeneniya i golotsena Altaya: Sobytiino- сatastroficheskaya model' (Paleogeography of the Last Glaciation and the Holocene of Altai: a catastrophic events model). Tomsk: TGU (Publ.), 1993. 253 p. (in Russ.)

13. Carling P.A. A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia. Branson J., Brown A.G., and Gregory K.J. (Eds.) Global continental changes: the context of palaeohydrology. Geological Society Special Publications. London. 1996. No. 115. P. 165–179.

14. Carling P.A. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology. 2009. Vol. 43. P. 647–664. https://doi.org/10.1111/j.1365-3091.1996.tb02184.x

15. Carling P.A., Bristow C.S., and Litvinov A.S. Ground-penetrating radar stratigraphy and dynamics of megaflood gravel dunes. Journal of the Geological Society. 2016. Vol. 173. P. 550–559. https://doi.org/10.1144/jgs2015-119

16. Carling P.A., Kirkbride A.D., Parnachev S., Borodavko P.S., and Berger G.W. Late Quaternary catastrophic flooding in the Altai Mountains of south-central Siberia: A synoptic overview and introduction to flood deposit sedimentology. Flood and Megaflood Processes and deposits: Recent and Ancient Examples. International Association of Sedimentologists, Special Publication. 2002. Vol. 32. P. 17–35.

17. Deev E.V., Zolnikov I.D., Kurbanov R.N., Panin A.V., Murray A., Korzhenkov A.M., Turova I.V., Pozdnyakova N.I., and Vasiliev A.V. OSL Dating of the Sukor earthquake-induced rockslide in Gorny Altai: Paleo-seismological and paleogeographic implications. Russian Geology and Geophysics. 2022. Vol. 63. No. 6. P. 743–754. https://doi.org/10.2113/RGG20204300

18. Devyatkin E.V. Kainozoiskie otlozheniya i neotektonika Yugo-Vostochnogo Altaya (Cenozoic sediments and neotectonics of the south-eastern Altai). Moscow: Nauka (Publ.), 1965. 244 p. (in Russ.)

19. Gómez-Ortiz D., Martín-Crespo T., Rodríguez I., Sánchez M.J., and Montoya I. The internal structure of modern barchan dunes of the Ebro River delta (Spain) from ground-penetrating radar. Journal of Applied Geophysics. 2009. Vol. 68. No. 2. P. 159–70.

20. Grosswald M.G. Evraziiskie gidrosfernye katastrofy i oledenenie Arktiki (Eurasian hydrospheric catastrophes and the Arctic glaciations). Moscow: Nauchnyi mir (Publ.), 1999. 120 p. (in Russ.)

21. Herget J. Reconstruction of Pleistocene ice-dammed lake outburst f loods in the Altai Mountains, Siberia. Geological Society of America Special Papers. 2005. Vol. 386. 118 p. https://doi.org/10.1130/0-8137-2386-8.1

22. Inishev N.G., Rudoy A.N., Zemtsov V.A., and Vershinin D.A. The first computer model of currents in the Kurai intermountane basin, Altai, under release of a glacial-dammed lake. Doklady Earth Sciences. 2015. Vol. 461. No. 1. P. 283–285. https://doi.org/10.7868/S0869565215080216

23. Komatsu G., Arzhannikov S.G., Gillespie A.R., Burke R.M., Miyamoto H., and Baker V.R. Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology. 2009. Vol. 104. No. 3–4. P. 143–164. https://doi.org/10.1016/j.geomorph.2008.08.009

24. Li M.Z., Shaw J., Todd B.J., Kostylev V.E., and Wu Y. Sediment transport and development of banner banks and sandwaves in an extreme tidal system: Upper Bay of Fundy, Canada. Continental Shelf Research. 2014. Vol. 83. P. 86–107. https://doi.org/10.1016/j.csr.2013.08.007

25. Lobacheva D.M., Badyukova E.N., and Makshaev R.R. Lithofacial structure and conditions of accumulation of Baer knoll deposits in the Northern Caspian region. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2021. No. 6. P. 99–111. (in Russ.)

26. Lungersgauzen G.F. and Rakovec O.A. Some new data on the stratigraphy of Tertiary deposits in the Altai Mountains. Tr. VAGT. 1958. Vol. 4. P. 79–91. (in Russ.)

27. Möller P. and Dowling T.P.F. Equifinality in Glacial Geomorphology: Instability Theory Examined via Ribbed Moraine and Drumlins in Sweden. GFF. 2018. Vol. 140. No. 2. P. 106–135. https://doi.org/10.1080/11035897.2018.1441903

28. Okishev P.A. Dinamika oledeneniya Altaya v pozdnem pleistotsene i golotsene (Dynamics of glaciation in the Altai in the Late Pleistocene and Holocene). Tomsk: TGU

29. (Publ.), 1982. 209 p. (in Russ.)

30. Okishev P.A. and Borodavko P.S. Reconstructions of “fluvial catastrophes” in the mountains of Southern Siberia and their parameters. Vestnik Tomskogo universiteta. 2001. No. 274. P. 3–13. (in Russ.)

31. Panin A.V., Baryshnikov G.Ya., and Suchilin A.A. Morphology and internal structure of boulder ridges in the Kurai basin of the Altai Mountains. Geografiya i prirodopol’zovanie Sibiri. 2016. No. 22. P. 113–124. (in Russ.)

32. Pozdnyakov A.V. Self-freezing of the ice dam: the self-regulation algorithm. Geography and Natural Resources. 2019. Vol. 40. No. 2. P. 180–186.

33. Pozdnyakov A.V. and Khon A.V. On the genesis of the “giant ripple” in the Kuray basin of the Altai Mountains. Vestnik Tomskogo universiteta, 2001. No. 274. P. 24–33. (in Russ.)

34. Pozdnyakov A.V. and Okishev P.A. Bottom dunes generation mechanism and possible genesis of “gigantic ridges” of Kurai basin in Altai Mountains. Geomorfologiya. 2002. No. 1. P. 82–90. (in Russ.)

35. Pozdnyakov A.V. and Pupyshev Yu.S. Chuya-Kurai ice-dammed lake in the stages of filling and drainage. Vestnik SGUGiT. 2019. Vol. 24. No. 2. P. 238–247. (in Russ.)

36. Pozdnyakov A.V., Pupyshev Yu.S., Puchkin A.V., and Khon A.V. Mechanism of “current ripple” formation due to stream-bifurcation dissection of the surface (Kurai basin, Altai Mountains). Materialy Vseros. konf. “VIII Shchukinskie chteniya: rel’ef i prirodopol’zovanie. M.: MSU (Publ.), 2020. P. 347–353. (in Russ.)

37. Pozdnyakov A.V., Pupyshev Yu.S., and Puchkin A.V. Substituted reality and the true genesis of the Kuray Ridges (Altai Mountains, Russia). Geosfernye issledovaniya. 2022. No. 2. P. 145–161. (in Russ.)

38. Pozdnyakov A.V. and Timofeyev D.A. Genesis of ridge relief in the Kuraiskaya depression (Mountain Altai). Geomorfologiya. 2007. No. 2. P. 78–89. (in Russ.)

39. Qian G., Yang Z., Luo W., Dong Z., Lu J., and Tian M. Morphological and sedimentary characteristics of dome dunes in the northeastern Qaidam Basin, China. Geomorphology. 2020. Vol. 350. https://doi.org/10.1016/j.geomorph.2019.106923

40. Rudoy A.N. and Baker V.R. Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Moutains, Siberia. Sedimentary Geology. 1993. Vol. 85. No. 1–4. P. 53–62. https://doi.org/10.1016/0037-0738(93)90075-G

41. Rudoy A.N. Gigantskaya ryab' techeniya (istoriya issledovanii, diagnostika, paleogeograficheskoe znachenie) (Giant current ripples (history of research, diagnosis, palaeogeographical significance). Tomsk: TGU (Publ.), 2005. 224 p. (in Russ.)

42. Rudoy A.N. Giant current ripples as proof of catastrophic glacial lake outbursts in the Altai Mountains. Sovremennye geomorfologicheskie protsessy na territorii Altaiskogo kraya (tezisy dokladov k konferentsii). Bijsk: Geographical Society of the USSR (Publ.), 1984. P. 60–64. (in Russ.)

43. Schrott L. and Sass O. Application of Field Geophysics in Geomorphology: Advances and Limitations Exemplified by Case Studies. Geomorphology. 2008. Vol. 93. No. 1–2. P. 55–73. https://doi.org/10.1016/j.geomorph.2006.12.024

44. Silvestro S., Fenton L.K., Michaels T.I., Valdez A., and Ori G.G. Interpretation of the complex dune morphology on Mars: Dune activity, modelling and a terrestrial analogue. Earth Surface Processes and Landforms. 2012. Vol. 37. P. 1424–1436. https://doi.org/10.1002/esp.3286

45. Starovoitov A.V. Interpretatsiya georadiolokatsionnykh dannykh. Uchebnoe posobie (The ground-penetrating radar data interpretation. Training guide). Moscow: MSU (Publ.), 2008. 192 p. (in Russ.)

46. Van Dam R.L. Landform characterization using geophysics – recent advances, applications, and emerging tools. Geomorphology. 2012. Vol. 137. No. 1. P. 57–73. https://doi.org/10.1016/j.geomorph.2010.09.005

47. Viktorov A.S. Osnovnye problemy matematicheskoi morfologii landshafta (Basic problems in mathematical landscape morphology). Moscow: Nauka (Publ.), 2006. 252 p. (in Russ.)

48. Vladov M.L. and Sudakova M.S. Georadiolokatsiya. Ot fizicheskikh osnov do perspektivnykh napravlenii. Uchebnoe posobie (Ground-penetrating radar. From the physical basics to the perspective areas. Training guide). Moscow: GEOS (Publ.), 2017. 240 p. (in Russ.)

49. Zhang Y., Wu Ch., Gao Ya., and Yang B. From flapping bumblebee to evolving sand dune: A reconstruction- based algorithm to feature the digitally recorded objects. International Journal of Pattern Recognition and Artificial Intelligence. 2018. Vol. 33. No. 4. https://doi.org/10.1142/S0218001419540156

50. Zolnikov I.D., Deev E.V., Kurbanov R.N., Panin A.V., Vasiliev A.V., Pozdnyakova N.I., and Turova I.V. Age of the Chibit Glaciation in Gornyi Altai. Doklady Earth Sciences. 2021a. Vol. 496. No. 2. P. 76–181. https://doi.org/10.1134/S1028334X21020227

51. Zolnikov I.D., Novikov I.S., Deev E.V., Shpansky A.V., and Mikharevich M.V. Facies composition and stratigraphic position of the Quaternary Upper Yenisei sequence in the Tuva and Minusa depressions. Russian Geology and Geophysics. 2021б. Vol. 62. No. 10. P. 1127–1138. https://doi.org/10.2113/RGG20204183

52. Zykin V.S., Zykina V.S., Savel’eva P.Yu., and Mistryukov A.A. On the history of river valleys in the Altai Mountains and the Near-Altai plain in the Pleistocene. Mat-ly Vseros. nauch. konf. “Rel’ef i ekzogennye protsessy gor”. Irkutsk: IG SB RAS (Publ.), 2011. Vol. 2. P. 82–85. (in Russ.)


Supplementary files

1. Рисунок 1
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
2. Рисунок 2
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
3. Рисунок 3
Subject
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
4. Рисунок 4
Subject
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
5. Рисунок 5
Subject
Type Исследовательские инструменты
View (313KB)    
Indexing metadata ▾
6. Рисунок 6
Subject
Type Исследовательские инструменты
View (893KB)    
Indexing metadata ▾
7. Таблица 1
Subject
Type Исследовательские инструменты
Download (32KB)    
Indexing metadata ▾
8. Таблица 2
Subject
Type Исследовательские инструменты
Download (33KB)    
Indexing metadata ▾

Review

For citations:


Bricheva S.S., Gonikov T.V., Panin A.V., Deev E.V., Matasov V.M., Doroshenkov M.M., Entin A.L., Lobacheva D.M. The origin of giant dunes in the Kuray Basin (South-Eastern Altai) based on morphometric analyses and GPR studies. Geomorfologiya. 2022;53(4):25-41. (In Russ.) https://doi.org/10.31857/S0435428122040034

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)