Preview

Geomorfologiya i Paleogeografiya

Advanced search

Comparative analysis of lake area distributions for lacustrine thermokarst plains and thermokarst plains with fluvial erosion

https://doi.org/10.31857/S0435428121020115

Abstract

A comparative analysis of lake area distributions for lacustrine thermokarst plains and thermokarst plains with fluvial erosion has been performed using he mathematical morphology of landscapes and remote sensing. We applied mathematical models of landscape patterns for lacustrine thermokarst plains and thermokarst plains with fluvial erosion under the “synchronous start” of the thermokarst conditions. Twenty-two key sites were included in the empirical testing. The empirical testing involves 22 key sites. These sites have different geomorphological environments within the areas of either continuous and discontinuous permafrost or sporadic permafrost. We have theoretically revealed and validated it empirically that in different natural environments, the lake area distribution within lacustrine thermokarst plains generally corresponds to the lognormal distribution while the gamma-distribution is almost absent. On the contrary, the model shows that lake area distribution within thermokarst plains with fluvial erosion generally corresponds to both the lognormal and gamma-distributions. This result does not exclude different scenarios of lake area distribution patterns for the plains with fluvial erosion under an asynchronous start of the thermokarst. The empirical testing proves the validity of the mathematical models of that the morphological patterns for the lacustrine thermokarst plains and thermokarst plains with fluvial erosion under the synchronous start of thermokarst processes. Therefore, different techniques should be used for the quantitative assessment of the impact probability of the thermokarst processes on engineering structures for the lacustrine thermokarst plains and thermokarst plains with fluvial erosion. The mathematical model used in this study proved to be a good instrument for such assessment.

About the Authors

A. S. Victorov
Sergeev Institute of Environmental Geoscience RAS (IEG RAS)
Russian Federation

Moscow



T. V. Orlov
Sergeev Institute of Environmental Geoscience RAS (IEG RAS)
Russian Federation

Moscow



A. L. Doroghko
Sergeev Institute of Environmental Geoscience RAS (IEG RAS)
Russian Federation

Moscow



References

1. Are F.E., Balobaev V.T., and Bosikov N.P. Osobennosti pererabotki beregov termokarstovykh ozer Tsentral’noi Yakutii (Features of the processing of the shores of thermokarst lakes in Central Yakutia). Ozera kriolitozony Sibiri. Novosibirsk: Nauka (Publ.), 1974. P. 39–52. (in Russ.)

2. Dneprovskaya V.P., Bryksina N.A., and Polishchuk Yu.M. Izuchenie izmenenii termokarsta v zone preryvistogo rasprostraneniya vechnoi merzloty Zapadnoi Sibiri na osnove kosmicheskikh snimkov (Study of thermokarst changes in the zone of intermittent distribution of permafrost in Western Siberia based on satellite images). Issledovanie Zemli iz kosmosa. 2009. No. 4. P. 88–96. (in Russ.)

3. Kirpotin S.N., Polishchuk Yu.M., and Bryksina N.A. Dinamika ploshchadei termokarstovykh ozer v sploshnoi i preryvistoi kriolitozonakh Zapadnoi Sibiri v usloviyakh global’nogo potepleniya (Dynamics of areas of thermokarst lakes in continuous and intermittent cryolithozone of Western Siberia in the context of global warming). Vestnik TGU. 2008. No. 311. P. 185–189. (in Russ.)

4. Polishchuk V.Yu. and Polishchuk Yu.M. Geoimitatsionnoe modelirovanie polei termokarstovykh ozer v zonakh merzloty. (Geo-simulation modeling of thermokarst lakes fields in permafrost zones). Khanty-Mansiysk: UIP YUGU (Publ.), 2013. 129 p. (in Russ.)

5. Kravtsova V.I. and Tarasenko T.V. Geoimitatsionnoe modelirovanie polei termokarstovykh ozer v zonakh merzloty (Study and mapping of the dynamics of thermokarst lakes in Western Siberia using multi-temporal satellite images). Vos’moe sibirskoe soveshchanie po klimato-ekologicheskomu monitoringu. Materialy rossiyskoi konferentsii 8–10 oktyabrya 2009. Tomsk: AgrafPress (Publ.), 2009. P. 273–275. (in Russ.)

6. Burn C.R. and Smith M.W. Development of Thermokarst Lakes During the Holocene at Sites Near Mayo, Yukon Territory. Permafrost and Periglacial Processes. 1990. Vol. 1. P. 161–176.

7. Smith L.C., Sheng Y., Macdonald G.M., and Hinzman L.D. Disappearing Arctic Lakes. Science. 2005. Vol. 308. No. 3. P. 14.

8. Shur Yu.L. Termokarst (k teplofizicheskim osnovam ucheniya o zakonomernostyakh razvitiya protsessa) (Thermokarst (to the thermophysical fundamentals of the theory of the development of the process)). M.: Nedra (Publ.), 1977. 80 p. (in Russ.)

9. Victorov A.S. Matematicheskaya model' termokarstovykh ozernykh ravnin kak odna iz osnov interpretatsii materialov kosmicheskikh s"emok (A mathematical model of thermokarst lake plains as one of the foundations for the interpretation of remote sensing data). Issledovanie Zemli iz kosmosa. 1995. No. 5. P. 42–50. (in Russ.)

10. Victorov A.S. and Kapralova V.N. Kolichestvennaya otsenka prirodnykh riskov na osnove materialov kosmicheskikh s"emok (na primere ozerno-termokarstovykh ravnin) (Quantitative assessment of natural risks based on remote sensing data (a case study of lacustrine thermokarst plains)). Issledovaniya Zemli iz kosmosa. 2013. No. 4. P. 33–38. (in Russ.)

11. Grosse G., Jones B.M., Nitze I., Lindgren P.R., Walter Anthony K.M., and Romanovsky V.E. Massive thermokarst lake area loss in continuous ice-rich permafrost of the northern Seward Peninsula, Northwestern Alaska, 1949–2015. XI International Conference on Permafrost – Book of Abstracts, 20 – 24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein, 2016. P. 739–740. doi:10.2312/GFZ.LIS.2016.001

12. Victorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., and Sadkov S.A. Analiz razvitiya morfologicheskoi struktury ozerno-termokarstovykh ravnin na osnove matematicheskoi modeli (The Mathematical Model of Thermokarst Lakes Surface as One of the Bases of the Space Survey Interpretation). Geomorfologiya (Geomorphology RAS). 2015. No. 3. P. 3–13. (in Russ.)

13. Polishchuk Yu.M. and Polishchuk V.Yu. Geo-simulation approach to modeling spatial objects and its application to creating thermokarst lake model using remote sensing data. BioClimLand. No. 1. P. 53–69.

14. Sejourne A., Costard F., Fedorov A., Gargani J., Skorve J., Masse M., and Mege D. Evolution of the banks of thermokarst lakes in Central Yakutiya (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology. 2015. No. 241. P. 31–40.

15. Bondurant A.C., Arp C., Jones B., and Engram M. Rates and mechanisms of expansion in thermokarst lakes with bedfast and floating ice regimes on the Arctic Coastal Plain of northern Alaska 2015. XI International Conference on Permafrost – Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein, 2016. P. 703–705. doi:10.2312/GFZ.LIS.2016.001

16. Romanovskii N.N. Erozionno-termokarstovye kotloviny na severe primorskikh nizmennostei Yakutii i Novosibirskikh ostrovakh (Erosion-thermokarst hollows in the north of the coastal lowlands of Yakutia and the Novosibirsk islands). Merzlotnye issledovaniya. 1961. Vyp. 1. P. 124–144. (in Russ.)

17. Victorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Sadkov S.A., and Panchenko E.G. Matematicheskaya morfologiya landshaftov kriolitozony (Mathematical morphology of cryolithozone landscapes). M.: RUDN (Publ.), 2016. 232 p. (in Russ.)

18. Victorov A.S. Mathematical Models of Thermokarst Erosion Plains // GIS and Spatial Analysis. Proceedings of IAMG 2005, Toronto, Canada. P. 62–67.

19. Victorov A.S. Osnovnye problemy matematicheskoi morfologii landshafta (The main problems of mathematical morphology of landscape). M.: Nauka (Publ.), 2006. 252 p. (in Russ.)

20. Metodicheskoe rukovodstvo po inzhenerno-geologicheskoi s"emke masshtaba 1:200000 (1:100 000, 1:50 000) (Methodical guide for geotechnical survey of 1: 200 000 scale (1: 100 000, 1:50 000)). M.: Nedra (Publ.), 1978. 391 p. (in Russ.)

21. Kramer. G. Matematicheskie metody statistiki (Mathematical methods of statistics). M.: Mir (Publ.), 1970. 648 p.


Review

For citations:


Victorov A.S., Orlov T.V., Doroghko A.L. Comparative analysis of lake area distributions for lacustrine thermokarst plains and thermokarst plains with fluvial erosion. Geomorfologiya. 2021;52(2):29-38. (In Russ.) https://doi.org/10.31857/S0435428121020115

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)