Gigantic volcano-glacial edifice (tuya) Olympus Mountain as an indicator of extensive ancient glaciation in Mars
https://doi.org/10.31857/S0435428121020073
Abstract
Olympus Mons (basement dimension – 550 × 600 km, absolute height – 21.1 km, relative elevation – 21.9 km, volume – 2.4 × 109 km3) is the largest volcanic edifice on Mars as well as on Earth. Comparative analysis, aimed to find the regular combinations between volcanic and glacial forms at Olympus Mons revealed their similarity to terrestrial volcanic landform, tuya. This, probably, testifies to their similar origin. Olympus Scarp, 3–6 km in height, bounding Olympus Mons, suggests that, during the formation of Olympus Mons vast glaciers existed beyond the polar regions. The distribution of extensive glacial moraines allowed to estimate the area of glaciation to be equal to 1.5–2 × 106 km2, as well as ice sheet thickness of 3–6 km, comparable to the recent height of Olympus Scarp. Several moraine lobes point to multiple phases of glaciations. The directions of the lobe propagation record the asymmetry in glaciers distribution. Edge of the glacier was located 700–750 km away from the crater in the South-western, Western, North-western, Northern, and North-eastern section of the volcano, and 500–600 km away elsewhere. Some of the glacial and fluvioglacial deposits disperse to the maximum extent of 1100 km, probably by giant mud flows, similar to terrestrial Jökulhlaup in Iceland ice-covered volcanoes. Such floods form when the heated during the eruption water melts the ice wall around the erupting vent and outbursts from the volcanic edifice.
About the Author
I. V. MelekestsevRussian Federation
Petropavlovsk-Kamchatsky
References
1. Sparrow G. The Planets. Planety. Puteshestvie po Solnechnoi sisteme (Planets. A journey through the Solar System). SPb.: Amfora (Publ.), 2008. 224 p.
2. Marov M.Ya. Planety Solnechnoi sistemy (Planets of the Solar System). M.: Nauka (Publ.), 1986. 320 p. (in Russ.)
3. Nerozzi S. and Holt J.W. Earliest accumulation history of the north polar layered deposits, Mars from SHARAD Icarus 308. 2018. P. 128–137.
4. Nerozzi S. and Holt J.W. Buried Ice and Sand Caps at the North Pole of Mars: Revealing a Record of Climate Change in the Cavi Unit With SHARAD. Geophysical Research Letters. 2019. Vol. 46. P. 7278–7286.
5. Orosei1 R., Lauro S.E., Pettinelli E., Cicchetti A., Coradini M., Cosciotti B., Di Paolo1 F., Flamini E., Mattei E., Pajola M., Soldovieri F., Cartacci M., Cassenti F., Frigeri A., Giuppi S., Martufi R., Masdea A., Mitri G., Nenna C., Noschese R., Restano M., and Seu R. Radar evidence of subglacial liquid water on Mars. Science. 2018. Vol. 361. P. 490–493.
6. Chumakov N.M. Dokembriskie tillity i tilloidy (Precambrian tillites and tilloids). M.: Nauka (Publ.), 1978. 202 p. (in Russ.)
7. Chumakov N.M. Sledy pozdnepermskogo oledeneniya na Kolyme: otzvuk gondvanskikh oledenenii na severo-vostoke Azii? (Traces of Late Permian glaciation on the River Kolyma: the echo of. Gondwana glaciations in North-East Asia). Stratigrafiya. Geologicheskaya korrelyatsiya. 1994. Vol. 2. No. 5. P. 70–82. (in Russ.)
8. Galimov E.M. Oledeneniya v istorii Zemli, biosfera i nizkaya svetimost' Solntsa (Glaciations in the History of the Earth. Biosphere. Low Luminosity of the Sun). Priroda. 2019. No. 6. P. 44–52. (in Russ.)
9. Ksanofomaliti L.V. Parad Planet (Parade of planets). M.: Nauka (Publ.), 1997. 256 p. (in Russ.)
10. Zimbelman J.R. Volcanism on Mars // Encyclopedia of Volcanoes. H. Sugurdsson (Ed.). Academic press. London. 2000. P. 771–783.
11. Ksanofomaliti L.V. Gornye potoki i basseiny na Marse (Mountain streams and pools on Mars). Mars: Velikoe protivostoyanie. Surdin V.G. Ed. M.: Nauka (Publ.), 2004. P. 199–207. (in Russ.)
12. Albee A. Zagadochnye landshafty Marsa. Kosmos (The Unearthly Landscapes of Mars. Space). Almanakh. 2006. S. 154–161.
13. Melekestsev I.V. Gora Rannyaya i obryv Sheridana v Antarktide – samye starye i vysokoshirotnye tuya na Zemle (Mount Early and Sheridan Cliff in Antarctica are the oldest and highest latitude tyuyas on Earth). Vestnik KRAUNTS. Nauki o Zemle. 2011. No. 1. P. 142–146. (in Russ.)
14. Schopka H., Gudmundsson M.T., and Tuffen H. The formation of Helgafell, Southwest Iceland, a monogenetic subglacial. J. Volcanol. Geotherm. Res. 2006. Vol. 152. P. 359–377.
15. Mathews W.H. “Tuyas”, flat-topped volcanoes in Northen British Columbia. Am. J. Sci. Vol. 245. P. 560–570.
16. Burba G.A. Nomenklatura detalei rel’efa Marsa (Nomenclature of Mars relief details). M.: Nauka (Publ.), 1981. 86 p. (In Russ.)
17. Smellie J.I. Subglacial eruption. Sigurdsson H., Hougthon B., McNutt S.R., Stix (Eds.). Enciclopedia of Volcanoes. Academic Press. London. 2000. P. 403–418.
18. Russel J.K., Edwards B.R., Porrit L., and Ruane C. Tuyas: a descriptive genetic classification. Quaternary Science Reviews. 2014. Vol. 87. P. 70–81.
19. Mars: Velikoe protivostoyanie (The Greatest Opposition of Mars). Surdin V.G. (Ed.). M.: Nauka (Publ.), 2004. 224 p. (in Russ.)
20. Gipsometricheskaya karta Marsa (Hypsometric map of Mars). Yu.A. Ilyuhina (Ed.). M.: Gosudarstvennyi Astronomicheskii Institut im. P.K. Shternberga MGU (Publ.), 2004.
21. Melekestsev I.V. Vulkanism i rel’efoobrazovanie (Volcanism and relief formation). M.: Nauka (Publ.), 1980. 212 p.
22. Volcanism in Hawaii. Decker R.W., Wright T.L., Stauffer P.H. (Eds.). Vol. 1. U.S. Geological Survey Professional Paper 1350. U.S. Government Printing office, Washington. 1987. 840 p.
23. Noveishii i sovremennyi vulkanizm na territorii Rossii (Modern and Holocene volcanism in Russia). L.I. Laverov (Ed.). M.: Nauka (Publ.), 2005. 604 p. (in Russ.)
24. Allen C.C. Volcano-ice interactions on Mars. J. Geophys. Res. 1979. Vol. 84. P. 8048–8059.
25. Noe-Nygaard A. Sub-glacial volcanic activity and recent times (Studies in the palagonite-system of Iceland No. 1). Folia Geogr. Danica. 1940. Vol. 1. No. 2. 67 p.
26. Vlodavets V.I. Spravochnik po vulkanologii (Handbook on Volcanology). M.: Nauka (Publ.), 304 p. (in Russ.)
27. Melekestsev I.V., Dirksen O.V., and Girina O.A. Gigantskii eksplozivno-obval’nyi tsirk i oblomochnaya lavina na vulkane Bakening (Kamchatka, Rossiya) (A Giant Explosive-Landslide Cirque and a debris avalanche on Bakening Volcano (Kamchatka, Russia)). Vulkanologiya i Seismologiya. 1998. No. 3. P. 265–279. (in Russ.)
28. Melekestsev I.V., Kraevaya T.S., and Braitseva O.A. Rel’ef i otlozheniya molodykh vulkanicheskikh raionov Kamchatki (Relief and Deposits of Young Volcanic regions of Kamchatka). M.: Nauka (Publ.), 103 p.
29. Rodionova Zh. F. Kratkaya istoriya karty Marsa (A brief history of the map of Mars). Mars: Velikoe protivostoyanie Surdin V.G. (Ed.). M.: Nauka (Publ.), 2004. P. 183–198. (in Russ.)
30. Musser J. Krasnaya planeta ne zhaluet nezvanykh gostei. Kosmos (The Red Planet does not favor uninvited guests. Space). Almanakh. 2006. P. 162–167.
Review
For citations:
Melekestsev I.V. Gigantic volcano-glacial edifice (tuya) Olympus Mountain as an indicator of extensive ancient glaciation in Mars. Geomorfologiya. 2021;52(2):89-99. (In Russ.) https://doi.org/10.31857/S0435428121020073