Морская биогеоморфология: биогенная трансформация морских донных ландшафтов
https://doi.org/10.31857/S0435428121030081
Аннотация
Биогенная трансформация подводных ландшафтов – один из ведущих факторов, определяющих современный облик дна. Задача морской биогеоморфологии – изучение всех аспектов биологической модификации геоморфологических процессов, т.е. описание, систематизация и количественная оценка влияния биоты на формирование донного рельефа. В обзоре систематизированы и кратко охарактеризованы основные виды воздействия морских организмов на геоморфологические процессы. Живые организмы создают биогенные структуры и материал для донных отложений, изменяют рельеф, физические и химические свойства донных отложений и коренных пород, участвуют в разрушении пород на морском дне (от илов до базальтов), переносе и перераспределении материала на дне и в придонном слое; они способны переводить растворенный в воде кальций и кремний в нерастворимые (или слабо растворимые) карбонаты и силикаты. Примером биогенных сооружений служат рифы – коралловые и созданные многощетинковыми червями, мидиевые и устричные банки. Животные создают не только положительные, но и отрицательные формы рельефа, размеры которых могут превышать десятки метров, а время существования – недели и даже месяцы: ямы, канавы, воронки на поверхности дна – следы питания самых разных животных: моржей, черепах, китов, скатов и др. Микро- и макроорганизмы формируют глубокие ниши вблизи уреза воды (биокарст). Мангры, водоросли-макрофиты и морские травы защищают дно от размыва, а породы на дне от выветривания, работают как седиментационные ловушки, в которых накапливаются тонкие фракции осадка. Рыбы переносят материал с рифа в лагуну. Водоросли-макрофиты за счет парусности могут переносить валуны и гальку на большие расстояния (“рафтинг”). Многие виды двустворчатых моллюсков и другие фильтраторы пропускают через себя большие объемы воды, отсеивая из нее минеральную взвесь. Вертикальное перемещение (биотурбация) осадков роющими грунт червеобразными животными и уплотнение грунта ими (биостабилизация) изменяют физические свойства донных осадков. Один и тот же вид часто играет противоположные роли – увеличивает прочность осадка или уменьшает ее. Многообразие и разнонаправленность биологических процессов затрудняют выявление вклада биоты в геоморфологические процессы и их количественную оценку. За некоторыми исключениями пространственный масштаб деятельности единичных организмов редко превышает первые сантиметры. Заметной становится только совокупная деятельность многих совместно обитающих организмов. Практические приложения биогеоморфологии связаны с разработкой мер для берегоукрепления и защиты берегов.
Ключевые слова
Список литературы
1. Coombes M.A. Biogeomorphology. In: Richardson D., Castree N., Goodchild M., Kobayashi A., Liu W., Marston D. (Eds.) International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Inc. 2017. 8464 p.
2. Biogeomorphology. Viles H. (Ed.). Oxford: Blackwell. 1988. 352 p.
3. Möbius K. Die Auster und die Austernwirtschaft. Wiegumdt, Hempel and Parey, Berlin. 1877. 126 s.
4. Jones C.G., Lawton J.H., and Shachak M. Organisms as ecosystem engineers // Oikos. 1994. Vol. 69. P. 373–86.
5. Jones C.G., Lawton J.H., and Shachak M. Positive and negative effects of organisms as physical ecosystem engineers // Ecology. 1997. Vol. 78. P. 1946–57.
6. Jones C.G. Ecosystem engineers and geomorphological signatures in landscapes // Geomorphology. 2012. Vol. 157. P. 75– 87.
7. Jumars P.A. and Nowell A.R.M. Effects of benthos on sediment transport: difficulties with functional grouping // Continental Shelf Research. 1984. Vol. 3. No. 2. P. 115–130.
8. Jumars P.A., Self R.F.L., and Nowell A.R.M. Mechanics of particle selection by tentaculate deposit feeders // Journal of Experimental Marine Biology and Ecology. 1982. Vol. 64. P. 47–70.
9. Montague C.L. Influence of Biota on Erodibility of Sediments. Mehta A.J. (Ed.) Estuarine Cohesive Sediment Dynamics. Lecture Notes on Coastal and Estuarine Studies, Vol. 14. Springer, New York, NY. 1986. P. 251–269.
10. Volkenborn N., Robertson D.M., and Reise K. Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion // Helgoland Marine Research. 2009. Vol. 63. No. 1. P. 27–35.
11. Леонтьев О.К., Рычагов Г.И. Общая геоморфология: Учеб. для студ. геогр. спец. вузов. 2-е изд., перераб. и доп. М.: Высш. шк., 1988. 319 с.
12. Сафьянов Г.А. Геоморфология морских берегов. М.: Изд-во МГУ, 1996. 400 с.
13. Заварзин Г.А. Лекции по природоведческой микробиологии. М.: Наука, 2003. 348 с.
14. Naylor L.A., Viles H.A., and Carter N.E.A. Biogeomorphology revisited: looking towards the future // Geomorphology. 2002. Vol. 47. P. 3–14.
15. Fei S., Phillips J., and Shouse M. Biogeomorphic Impacts of Invasive Species // Annu. Rev. Ecol. Evol. Syst. 2014. Vol. 45. P. 69–87.
16. Лисицин А.П. Осадкообразование в океанах. М.: Наука, 1974. 438 с.
17. Gutiérrez J.L., Jones C.G., Strayer D.L., and Iribarne O.O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats // Oikos. 2003. Vol. 101. No. 1. P. 79–90.
18. Gallardi D. Effects of Bivalve Aquaculture on the Environment and Their Possible Mitigation: A Review // Fish. Aquac. J. 2014. Vol. 5. P. 105.
19. Coral Reefs in the Anthropocene. Birkeland C. (Ed.). Springer, Dordrecht. 2015. 271 p.
20. Fox W.T. Reefs, Non-Coral. Schwartz M.L. (Ed). Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. 2005. P. 795.
21. Nelson C.S. An introductory perspective on non-tropical shelf carbonates // Sedimentary geology. 1988. Vol. 60. No. 1–4. P. 3–12.
22. Pedley M., and Carannante G. Cool-water carbonate ramps: a review // Geological Society, London, Special Publications. 2006. Vol. 255. No. 1. P. 1–9.
23. Freiwald A., Fosså J.H., Grehan A., Koslow T., and Roberts J.M. Cold-water Coral Reefs. UNEP-WCMC, Cambridge, UK. 2004. 85 p.
24. Freiwald A., Hühnerbach V., Lindberg B., Wilson J.B., and Campbell J. The Sula reef complex, Norwegian shelf // Facies. 2002. Vol. 47. No. 1. P. 179–200.
25. Büscher J.V., Wisshak M., Form A.U., Titschack J., Nachtigall K., and Riebesell U. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat // Peer J. 2019. Vol. 7. e7586.
26. Freiwald A. Reef-Forming Cold-Water Corals. Wefer G., Billett D., Hebbeln D., Jørgensen B.B., Schlüter M., and van Weering T.C.E. (Eds.) Ocean Margin Systems. Springer, Berlin, Heidelberg. 2002. p. 365–385.
27. Roberts J.M., Wheeler A., Freiwald A., and Cairns S. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press. 2009. 334 p.
28. Chemello R. and Silenzi S. Vermetid reefs in the Mediterranean Sea as archives of sea-level and surface temperature changes // Chemistry and Ecology. 2011. Vol. 27. No. 2. P. 121–127.
29. Gravina M.F., Cardone F., Bonifazi A., Bertrandino M.S., Chimienti G., Longo C., Marzano C.N., Moretti M., Lisco S., Moretti V., and Corriero G. Sabellaria spinulosa (Polychaeta, Annelida) reefs in the Mediterranean Sea: habitat mapping, dynamics and associated fauna for conservation management // Estuarine, Coastal and Shelf Science. 2018. Vol. 200. P. 248–257.
30. Le Cam J.-B., Fournier J., Etienne S., and Couden J. The strength of biogenic sand reefs: visco-elastic behaviour of cement secreted by the tube building polychaete Sabellaria alveolata, Linnaeus, 1767 // Estuar. Coast. Shelf Sci. 2011. Vol. 91. P. 333–339.
31. Jones A.G., Dubois S.F., Desroy N., and Fournier J. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) // Estuarine, Coastal and Shelf Science. 2018. Vol. 200. P. 1–18.
32. Rabaut M., Vincx M., and Degraer S. Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects // Helgol. Mar. Res. 2009. Vol. 63. P. 37–46.
33. Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge // Oceanogr. Mar. Biol. 2006. Vol. 44. P. 123–195.
34. Maximova O.V. and Fayes S. Deep-Sea Calcareous Rhodophycophyta Communities in the Levantine Sea. In The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. Springer, Dordrecht. 1999. P. 437–440.
35. Pérès J.-M. The mediterranean benthos // Oceanography and Marine Biology: an annual review. 1967. Vol. 5. P. 449–533.
36. Максимова О.В. Сообщества морских макрофитов // Жизнь на дне. Биогеография и биоэкология бентоса. М.: КМК, 2010. С. 116–169.
37. Barbera C., Bordehore C., Borg J.A., Glémarec M., Grall J., Hall-Spencer J.M., De La Huz C.H., Lanfranco E., Lastra M., Moore P.G., and Mora J. Conservation and management of northeast Atlantic and Mediterranean maerl beds // Aquatic conservation: marine and freshwater ecosystems. 2003. Vol. 13. No. S1. P. S65–S76.
38. Hall-Spencer J.M. Conservation issues relating to maerl beds as habitats for molluscs // Journal of Conchology. Special Publication. 1998. No. 2. P. 271–286.
39. Чербаджи И.И., Пропп Л.Н. Содержание органического углерода, азота и фосфора у глубоководных биоценозов кораллиновых водорослей Южно-Китайского моря // Океанология. 2019. Т. 59. № 4. С. 569–578.
40. Bosence D. and Wilson J. Maerl growth, carbonate production rates and accumulation rate in the north-eastern Atlantic // Aquatic Conservation: Marine and Freshwater Ecosystems. 2003. Vol. 13. P. 21–31.
41. Chisholm J.R. Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia // Limnology and Oceanography. 2000. Vol. 45. No. 7. P. 1476–1484.
42. Nelson C.H., Johnson K.R., and Barber Jr.J.H. Gray whale and walrus feeding excavation on the Bering Shelf, Alaska // Journal of Sedimentary Petrology. 1987. Vol. 57. P. 419–430.
43. Matthew L.R. and Mayorga-Dussarrat J. The impact of feeding by Chilean flamingos (Phoenicopterus chilensis) on the meiofaunal assemblage of a tidal flat // Marine Biology Research. 2016. Vol. 12. No. 10. P. 1039–1052.
44. Widdows J., Pope N.D., Brinsley M.D., Asmus H., and Asmus R.M. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension // Marine Ecology Progress Series. 2008. Vol. 358. P. 125–136.
45. Koch E.W. Sediment resuspension in a shallow Thalassia testudinum banks ex König bed // Aquatic Botany. 1999. Vol. 65. No. 1–4. P. 269–280.
46. van Katwijk M.M., Bos A.R., Hermus D.C.R., and Suykerbuyk W. Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions // Estuarine, Coastal and Shelf Science. 2010. Vol. 89. No. 2. P. 175–181.
47. Ghisalberti M. and Nepf H.M. Mixing layers and coherent structures in vegetated aquatic flows // Journal of Geophysical Research: Oceans. 2002. Vol. 107. No. C2. P. 1–11.
48. Ward L.G., Kemp W.M., and Boynton W.R. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment // Marine Geology. 1984. Vol. 59. No. 1–4. P. 85–103.
49. Koch E.W., Ackerman J.D., Verduin J., and van Keulen M. Fluid dynamics in seagrass ecology from molecules to ecosystems // Seagrasses: biology, ecologyand conservation. Springer, Dordrecht. 2007. P. 193–225.
50. Potouroglou M., Bull J.C., Krauss K.W., Kennedy H.A., Fusi M., Daffonchio D., Mangora M.M., Githaiga M.N., Diele K., and Huxham M. Measuring the role of seagrasses in regulating sediment surface elevation // Scientific reports. 2017. Vol. 7. No. 1. P. 1–11.
51. Ellison J.C. Biogeomorphology of mangroves. Coastal Wetlands. Elsevier. 2019. P. 687–715.
52. Madsen J.D., Chambers P.A., James W.F., Koch E.W., and Westlake D.F. The interaction between water movement, sediment dynamics and submersed macrophytes // Hydrobiologia. 2001. Vol. 444. No. 1–3. P. 71–84.
53. Gamenick I., Jahn A., Vopel K., and Giere O. Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments // Marine Ecology Progress Series. 1996. Vol. 144. P. 73–85.
54. Venier C., da Silva J.F., McLelland S.J., Duck R.W., and Lanzoni S. Experimental investigation of the impact of macroalgal mats on flow dynamics and sediment stability in shallow tidal areas // Estuarine, Coastal and Shelf Science. 2012. Vol. 112. P. 52–60.
55. Bardach J.E. Transport of calcareous fragments by reef fishes // Science. 1961. Vol. 133. No. 3446. P. 98–99.
56. Bellwood D.R. Carbonate Transport and within-Reef Patterns of Bioerosion and Sediment Release by Parrotfishes (Family Scaridae) on the Great Barrier Reef // Marine Ecology Progress Series. 1995. Vol. 117. No. 1/3. P. 127–136.
57. Frey S.E. and Dashtgard S.E. Seaweed-assisted, benthic gravel transport by tidal currents // Sedimentary Geology. 2012. Vol. 265. P. 121–125.
58. Waters J.M., King T.M., Fraser C.I., and Craw D. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp // Journal of the Royal Society Interface. 2018. Vol. 15. No. 140. P. 1–8.
59. Smith J.M.B. and Bayliss-Smith T.P. Kelp-plucking: coastal erosion facilitated by bull-kelp Durvillaea antarctica at subantarctic Macquarie Island // Antarctic Science. 1998. Vol. 10. No. 4. P. 431–438.
60. Garden C.J. and Smith A.M. The role of kelp in sediment transport: observations from southeast New Zealand // Marine Geology. 2011. Vol. 281. No. 1–4. P. 35–42.
61. Garden C.J. and Smith A.M. Voyages of seaweeds: The role of macroalgae in sediment transport // Sedimentary Geology. 2015. Vol. 318. P. 1–9.
62. Романенко Ф.А., Репкина Т.Ю., Ефимова Л.Е., Булочникова А.С. Динамика ледового покрова и особенности ледового переноса осадочного материала на приливных осушках Кандалакшского залива Белого моря // Океанология. 2012. Т. 52. № 5. С. 710–720.
63. Репкина Т.Ю., Шевченко Н.В., Ефимова Л.Е. Стационарные наблюдения за процессами ледового и биогенного морфолитогенеза на берегах Кандалакшского залива Белого моря. Геоморфологические ресурсы и геоморфологическая безопасность: от теории к практике. М.: МАКС Пресс, 2015. С. 501–504.
64. Riisgård H.U. On measurement of filtration rates in bivalves the stony road to reliable data: review and interpretation // Marine Ecology Progress Series. 2001. Vol. 211. P. 275–291.
65. Kautsky N. and Evans S. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem // Marine Ecology Progress Series. 1987. Vol. 38. P. 201–212.
66. Haven D.S. and Morales-Alamo R. Aspects of biodeposition by oysters and other invertebrate filter feeders. 1 // Limnology and Oceanography. 1966. Vol. 11. No. 4. P. 487–498.
67. Murray J.M., Meadows A., and Meadows P.S. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review // Geomorphology. 2002. Vol. 47. No. 1. P. 15–30.
68. Spencer T. Limestone coastal morphology: the biological contribution // Progress in Physical Geography. 1988. Vol. 12. No. 1. P. 66–101.
69. Kelletat D.H. Mediterranean coastal biogeomorphology: processes, forms and sea-level indicators // Bulletin Institut Oceanographique Monaco. 1997. Numero Special. P. 209–226.
70. Coombes M.A. The rock coast of the British Isles: weathering and biogenic processes // Geological Society, London, Memoirs. 2014. Vol. 40. No. 1. P. 57–76.
71. Naylor L.A., Coombes M.A., and Viles H.A. Reconceptualising the role of organisms in the erosion of rock coasts: a new model // Geomorphology. 2012. Vol. 157–158. P. 17–30.
72. Glynn P.W. and Manzello D.P. Bioerosion and coral reef growth: a dynamic balance. In Coral reefs in the Anthropocene. Springer, Dordrecht. 2015. P. 67–97.
73. Neumann A.C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa // Limnology and Oceanography. 1966. Vol. 11. No. 1. P. 92–108.
74. Kinsey D.W. Standards of performance in coral reef primary production and carbonate turnover. Barnes D.J. (Ed.) Perspectives on coral reefs. Brian Clouston, Manuka, 1983. P. 209–220.
75. Bellwood D.R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and Ch. sordidus, on the Great Barrier Reef, Australia // Marine Biology. 1995. Vol. 121. No. 3. P. 419–429.
76. Moura D., Gabriel S., Gamito S., Santos R., Zugasti E., Naylor L., Gomes A., Tavares A.M., and Martins A.L. Integrated assessment of bioerosion, biocover and downwearing rates of carbonate rock shore platforms in southern Portugal // Continental Shelf Research. 2012. Vol. 38. P. 79–88.
77. Coombes M.A., Naylor L.A., Viles H.A., and Thompson R.C. Bioprotection and disturbance: seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone // Geomorphology. 2013. Vol. 202. P. 4–14.
78. Zorn M.E., Gingras M.K., and Pemberton S.G. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications // Palaios. 2010. Vol. 25. No. 1. P. 59–72.
79. Teal L.R., Bulling M.T., Parker E.R., and Solan M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments // Aquatic Biology. 2008. Vol. 2. No. 3. P. 207–218.
80. Montserrat F., Van Colen C., Degraer S., Ysebaert T., and Herman P.M. Benthic community-mediated sediment dynamics // Marine ecology progress series. 2008. Vol. 372. P. 43–59.
81. Вехов В.Н. Зостера морская (Zostera marina L.) Белого моря. М.: Изд-во МГУ, 1992. 143 с.
82. Матвеева Т.А., Никитина Н.С., Черновская Е.Н. Причины и следствия неравномерного распределения червей Fabricia sabella и Arenicola marina на литорали // Докл. АН СССР. 1955. Т. 105. Вып. 2. С. 370–373.
83. Meadows P.S. and Tait J. Modification of sediment permeability and shear strength by two burrowing invertebrates // Marine Biology. 1989. Vol. 101. P. 75–82.
84. Decho A.W. and Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems // Front. Microbiol. 2017. Vol. 8. Art. 922. P. 1–28.
85. Hubas C., Sachidhanandam C., Rybarczyk H., Lubarsky H.V., Rigaux A., Moens T., and Paterson D.M. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms // Marine Ecology Progress Series. 2010. Vol. 419. P. 85–94.
86. Wotton R.S. The utiquity and many roles of exopolymers (EPS) in aquatic systems // Scientia marina. 2004. Vol. 68. No. S1. P. 13–21.
87. Gerbersdorf S.U., Manz W., and Paterson D.M. The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments // FEMS Microbiol. Ecol. 2008. Vol. 66. P. 282–294.
88. Madsen K.N., Nilsson P., and Sundbäck K. The influence of benthic microalgae on the stability of a subtidal sediment // Journal of experimental marine biology and ecology. 1993. Vol. 170. No. 2. P. 159–177.
89. Widdows J. and Brinsley M. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone // Journal of sea Research. 2002. Vol. 48. No. 2. P. 143–156.
90. Stal L.J. Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization // Ecological Engineering. 2010. Vol. 36. No. 2. P. 236–245.
91. Urban-Malinga B. Meiobenthos in marine coastal sediments // Geological Society, London, Special Publications. 2014. Vol. 388. No. 1. P. 59–78.
92. Escapa M., Perillo G.M., and Iribarne O. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats // Estuarine, Coastal and Shelf Science. 2008. Vol. 80. No. 3. P. 365–373.
93. Canal-Vergés P., Vedel M., Valdemarsen T., Kristensen E., and Flindt M.R. Resuspension created by bedload transport of macroalgae: implications for ecosystem functioning // Hydrobiologia. 2010. Vol. 649. No. 1. P. 69–76.
94. Defew E.C., Tolhurst T.J., and Paterson D.M. Site-specific features influence sediment stability of intertidal flats // Hydrology and Earth System Sciences Discussions, European Geosciences Union. 2002. Vol. 6. No. 6. P. 971–982.
95. Kornman B.A. and de Deckere E.M.G.T. Temporal variation in sediment erodibility and suspended sediment dynamics in the Dollard Estuary. In: Black K.S., Paterson D.M., Cramp A. (Eds). Sedimentary Processes in the Intertidal Zone. Geological Society, London, 1998. Special Publications. Vol. 139. P. 231–241.
96. Holland A.F., Zingmark R.G., and Dean J.M. Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms // Marine Biology. 1974. Vol. 27. No. 3. P. 191–196.
97. Mazda Y., Magi M., Kogo M., and Hong P.N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam // Mangroves and Salt marshes. 1997. Vol. 1. No. 2. P. 127–135.
98. Tran Quang Bao. Effect of mangrove forest structures on wave attenuation in coastal Vietnam // Oceanologia. 2011. Vol. 53. No. 3. P. 807–818.
99. Dahdouh-Guebas F. and Jayatissa L.P. A bibliometrical review on pre-and post-tsunami assumptions and facts about mangroves and other coastal vegetation as protective buffers // Ruhuna Journal of Science. 2009. Vol. 4. P. 28–50.
100. Krauss K.W. and Osland M.J. Tropical cyclones and the organization of mangrove forests: a review // Annals of Botany. 2020. Vol. 125. No. 2. P. 213–234.
101. Möller I., Spencer T., French J.R., Leggett D.J., and Dixon M. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England // Estuarine, Coastal and Shelf Science. 1999. Vol. 49. No. 3. P. 411–426.
102. Möller I., Kudella M., Rupprecht F., Spencer T., Paul M., Van Wesenbeeck B.K., Wolters G., Jensen K., Bouma T.J., Miranda-Lange M., and Schimmels S. Wave attenuation over coastal salt marshes under storm surge conditions // Nature Geoscience. 2014. Vol. 7. No. 10. P. 727–731.
103. Ford H., Garbutt A., Ladd C., Malarkey J., and Skov M.W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands // Journal of vegetation science. 2016. Vol. 27. No. 2. P. 259–268.
104. Christianen M.J.A., van Belzen J., Herman P.M.J., van Katwijk M.M., Lamers L.P.M., van Leent P.J.M., and Bouma T.J. Low-canopy seagrass beds still provide important coastal protection services // PLoS ONE. 2013. Vol. 8. No. 5. e62413. https://doi.org/10.1371/journal.pone.0062413
105. Bos A.R., Bouma T.J., de Kort G.L., and van Katwijk M.M. Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification // Estuarine, Coastal and Shelf Science. 2007. Vol. 74. No. 1–2. P. 344–348.
106. Borsje B.W., van Wesenbeeck B.K., Dekker F., Paalvast P., Bouma T.J., van Katwijk M.M., and de Vries M.B. How ecological engineering can serve in coastal protection // Ecological Engineering. 2011. Vol. 37. No. 2. P. 113–122.
107. Spalding M.D., Ruffo S., Lacambra C., Meliane I., Hale L.Z., Shepard C.C., and Beck M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards // Ocean & Coastal Management. 2014. Vol. 90. P. 50–57.
108. Schoonees T., Gijón Mancheño A., Scheres B., Bouma T.J., Silva R., Schlurmann T., and Schüttrumpf H. Hard Structures for Coastal Protection, Towards Greener Designs // Estuaries and Coasts. 2019. Vol. 42. P. 1709–1729.
109. Бадюкова Е.Н., Жиндарев Л.А., Лукьянова С.А., Соловьева Г.Д., Щербина В.В. Особенности современной динамики лагунных берегов Куршской косы, юго-восток Балтики //Литодинамика донной контактной зоны океана. М.: ГЕОС, 2009. С. 124–130.
110. Coombes M.A., Naylor L.A., Thompson R.C., Roast S.D., Gómez-Pujol L., and Fairhurst R.J. Colonization and weathering of engineering materials by marine microorganisms: an SEM study // Earth Surface Processes and Landforms. 2011. Vol. 36. No. 5. P. 582–593.
Рецензия
Для цитирования:
Мокиевский В.О. Морская биогеоморфология: биогенная трансформация морских донных ландшафтов. Геоморфология. 2021;52(3):3-23. https://doi.org/10.31857/S0435428121030081
For citation:
Mokievsky V.O. Мarine biogeomorphology: biotic transformation of marine bottom landforms. Geomorfologiya. 2021;52(3):3-23. (In Russ.) https://doi.org/10.31857/S0435428121030081