Preview

Geomorfologiya i Paleogeografiya

Advanced search

Мarine biogeomorphology: biotic transformation of marine bottom landforms

https://doi.org/10.31857/S0435428121030081

Abstract

Biogenic transformation is one of the leading factors responsible for the state of the modern sea bottom. The goal of marine biogeomprphology is to understand all of the processes responsible for biological modification of the sea bottom. This review includes description, classification and quantitative analysis of the influence of biota on the sea bottom landscapes. The living organisms create biogenic structures and marine sediments, change bottom landscape, and physical and chemical properties of sediments and bedrock. They participate in biological weathering, redistribution of sediments at the sea bottom and within the near-bottom layer, convert dissolved calcium and silica into stable carbonates and silicates. Examples of marine biogenic forms include coral and polycaetes reefs, mussel and oyster banks. The organisms create both, positive and negative marine landform that may reach 10 and more meters in size. Borrows, holes, ditches, funnels created by walruses, turtles, whales, scouts etc. may persist on the bottom from weeks to months. Micro and macro organisms create notches at the sea level (bio-karst). Mangroves, algae and seagrass protect sea bottom from erosion and trap fine grain sediments. Fish transport sediments from reefs to lagoons. Macrophyte algae are capable to move cobbles and pebble size material to long distances (rafting). Many bivalve mollusks and other filter feeder organisms sieve mineralogic fraction filtering large volumes of water. Bioturbation performed by borrowing worms change physical and chemical properties, stabilize and compact marine sediments. The same species of organisms may both, increase and decrease strength properties of marine sediments. Diversity and variability of biological processes obstruct the understanding and quantitative assessment of the role of biota in geomorphological processes. With rare exceptions, the impact of single organisms on marine landscape is limited to a few cm, but integrated activities of organisms within the same habitat are causing noticeable changes. Practical applications of biogeomorphology are particularly useful in developing measures to protect coast from erosion.

About the Author

V. O. Mokievsky
Shirshov Institute of oceanology
Russian Federation

Moscow



References

1. Coombes M.A. Biogeomorphology. Richardson D., Castree N., Goodchild M., Kobayashi A., Liu W., and Marston D. (Eds.). International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley & Sons, Inc. 2017. 8464 p.

2. Biogeomorphology. Viles H. (Ed.). Oxford: Blackwell. 1988. 352 p.

3. Möbius K. Die Auster und die Austernwirtschaft. Wiegumdt, Hempel and Parey, Berlin. 1877. 126 s.

4. Jones C.G., Lawton J.H., and Shachak M. Organisms as ecosystem engineers. Oikos. 1994. Vol. 69. P. 373–86.

5. Jones C.G., Lawton J.H., and Shachak M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 1997. Vol. 78. P. 1946–57.

6. Jones C.G. Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology. 2012. Vol. 157. P. 75–87.

7. Jumars P.A. and Nowell A.R.M. Effects of benthos on sediment transport: difficulties with functional grouping. Continental Shelf Research. 1984. Vol. 3. No. 2. P. 115–130.

8. Jumars P.A., Self R.F.L., and Nowell A.R.M. Mechanics of particle selection by tentaculate deposit feeders. Journal of Experimental Marine Biology and Ecology. 1982. Vol. 64. P. 47–70.

9. Montague C.L. Influence of Biota on Erodibility of Sediments. Mehta A.J. (Ed.) Estuarine Cohesive Sediment Dynamics. Lecture Notes on Coastal and Estuarine Studies. Vol. 14. Springer, New York, NY. 1986. P. 251–269.

10. Volkenborn N., Robertson D.M., and Reise K. Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion. Helgoland Marine Research. 2009. Vol. 63. No. 1. P. 27–35.

11. Leont’ev O.K. and Rychagov G.I. Obshchaya geomorfologiya: Ucheb. dlya stud. geogr. spets. vuzov (The general geomorphology). Moscow: Vysshaya Shkola (Publ.), 1988. 319 p. (in Russ.)

12. Saf’yanov G.A. Geomorfologiya morskikh beregov (Seashores geomorphology). Moscow: Moscow State Univ. (Publ.), 1996. 400 p. (in Russ.)

13. Zavarzin G.A. Lektsii po prirodovedcheskoi mikrobiologii (Lectures on the environmental microbiology). Moscow: Nauka (Publ.), 2003. 348 p. (in Russ.)

14. Naylor L.A., Viles H.A., and Carter N.E.A. Biogeomorphology revisited: looking towards the future. Geomorphology. 2002. Vol. 47. P. 3–14.

15. Fei S., Phillips J., and Shouse M. Biogeomorphic Impacts of Invasive Species. Annu. Rev. Ecol. Evol. Syst. 2014. Vol. 45. P. 69–87.

16. Lisitsin A.P. Osadkoobrazovanie v okeanakh (Sedimentation in the oceans). Moscow: Nauka (Publ.), 1974. 438 p. (in Russ.)

17. Gutiérrez J.L., Jones C.G., Strayer D.L., and Iribarne O.O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 2003. Vol. 101. No. 1. P. 79–90.

18. Gallardi D. Effects of Bivalve Aquaculture on the Environment and Their Possible Mitigation: A Review. Fish. Aquac. J. 2014. Vol. 5. P. 105.

19. Coral Reefs in the Anthropocene. Birkeland C. (Ed.). Springer, Dordrecht. 2015. 271 p.

20. Fox W.T. Reefs, Non-Coral. Schwartz M.L. (Ed.). Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. 2005. P. 795.

21. Nelson C.S. An introductory perspective on non-tropical shelf carbonates. Sedimentary geology. 1988. Vol. 60. No. 1–4. P. 3–12.

22. Pedley M., Carannante G. Cool-water carbonate ramps: a review. Geological Society, London, Special Publications. 2006. Vol. 255. No. 1. P. 1–9.

23. Freiwald A., Fosså J.H., Grehan A., Koslow T., Roberts J.M. Cold-water Coral Reefs. UNEP-WCMC, Cambridge, UK. 2004. 85 p.

24. Freiwald A., Hühnerbach V., Lindberg B., Wilson J. B., and Campbell J. The Sula reef complex, Norwegian shelf. Facies. 2002. Vol. 47. No. 1. P. 179–200.

25. Büscher J.V., Wisshak M., Form A.U., Titschack J., Nachtigall K., and Riebesell U. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat. Peer J. 2019. Vol. 7. e7586.

26. Freiwald A. Reef-Forming Cold-Water Corals. Wefer G., Billett D., Hebbeln D., Jørgensen B.B., Schlüter M., and van Weering T.C.E. (Eds.). Ocean Margin Systems. Springer, Berlin, Heidelberg. 2002. P. 365–385.

27. Roberts J.M., Wheeler A., Freiwald A., and Cairns S. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press. 2009. 334 p.

28. Chemello R. and Silenzi S. Vermetid reefs in the Mediterranean Sea as archives of sea-level and surface temperature changes. Chemistry and Ecology. 2011. Vol. 27. No. 2. P. 121–127.

29. Gravina M.F., Cardone F., Bonifazi A., Bertrandino M.S., Chimienti G., Longo C., Marzano C.N., Moretti M., Lisco S., Moretti V., and Corriero G. Sabellaria spinulosa (Polychaeta, Annelida) reefs in the Mediterranean Sea: habitat mapping, dynamics and associated fauna for conservation management. Estuarine, Coastal and Shelf Science. 2018. Vol. 200. P. 248–257.

30. Le Cam J.-B., Fournier J., Etienne S., and Couden J. The strength of biogenic sand reefs: visco-elastic behaviour of cement secreted by the tube building polychaete Sabellaria alveolata, Linnaeus, 1767. Estuar. Coast. Shelf Sci. 2011. Vol. 91. P. 333–339.

31. Jones A.G., Dubois S.F., Desroy N., and Fournier J. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science. 2018. Vol. 200. P. 1–18.

32. Rabaut M., Vincx M., and Degraer S. Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects. Helgol. Mar. Res. 2009. Vol. 63. P. 37–46.

33. Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. 2006. Vol. 44. P. 123–195.

34. Maximova O.V. and Fayes S. Deep-Sea Calcareous Rhodophycophyta Communities in the Levantine Sea. In The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. Springer, Dordrecht. 1999. P. 437–440.

35. Pérès J.-M. The mediterranean benthos. Oceanography and Marine Biology: an annual review. 1967. Vol. 5. P. 449–533.

36. Maksimova O.V. Soobshchestva morskikh makrofitov. (Associations of marine macrophytes). Zhizn’ na dne (The life on sea-bottom). Moscow: KMK Ltd (Publ.), 2010. P. 116–169. (in Russ.)

37. Barbera C., Bordehore C., Borg J.A., Glémarec M., Grall J., Hall-Spencer J.M., De La Huz C.H., Lanfranco E., Lastra M., Moore P.G., and Mora J. Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquatic conservation: marine and freshwater ecosystems. 2003. Vol. 13. No. S1. P. S65–S76.

38. Hall-Spencer J.M. Conservation issues relating to maerl beds as habitats for molluscs. Journal of Conchology. Special Publication. 1998. No. 2. P. 271–286.

39. Cherbadzhi I.I. and Propp L.N. Soderzhanie organicheskogo ugleroda, azota i fosfora u glubokovodnykh biotsenozov korallinovykh vodoroslei Yuzhno-Kitaiskogo morya (Content of Organic Carbon, Nitrogen, and Phosphorus in Deep-Water Coralline Algae Biocenoses, South China Sea). Oceanology. 2019. Vol. 59. No. 4. P. 514–522. (in Russ.)

40. Bosence D. and Wilson J. Maerl growth, carbonate production rates and accumulation rate in the northeastern Atlantic. Aquatic Conservation: Marine and Freshwater Ecosystems. 2003. Vol. 13. P. 21–31.

41. Chisholm J.R. Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography. 2000. Vol. 45. No. 7. P. 1476-1484.

42. Nelson C.H., Johnson K.R., and Barber Jr. J.H. Gray whale and walrus feeding excavation on the Bering Shelf, Alaska. Journal of Sedimentary Petrology. 1987. Vol. 57. P. 419–430.

43. Matthew L.R. and Mayorga-Dussarrat J. The impact of feeding by Chilean flamingos (Phoenicopterus chilensis) on the meiofaunal assemblage of a tidal flat. Marine Biology Research. 2016. Vol. 12. No. 10. P. 1039–1052.

44. Widdows J., Pope N.D., Brinsley M.D., Asmus H., and Asmus R.M. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Marine Ecology Progress Series. 2008. Vol. 358. P. 125–136.

45. Koch E.W. Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquatic Botany. 1999. Vol. 65. No. 1–4. P. 269–280.

46. van Katwijk M.M., Bos A.R., Hermus D.C.R., and Suykerbuyk W. Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions. Estuarine, Coastal and Shelf Science. 2010. Vol. 89. No. 2. P. 175–181.

47. Ghisalberti M. and Nepf H.M. Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research: Oceans. 2002. Vol. 107. No. C2. P. 1–11.

48. Ward L.G., Kemp W.M., and Boynton W.R. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology. 1984. Vol. 59. No. 1–4. P. 85–103.

49. Koch E.W., Ackerman J.D., Verduin J., and van Keulen M. Fluid dynamics in seagrass ecology from molecules to ecosystems. In Seagrasses: biology, ecologyand conservation. Springer, Dordrecht. 2007. P. 193–225.

50. Potouroglou M., Bull J.C., Krauss K.W., Kennedy H.A., Fusi M., Daffonchio D., Mangora M.M., Githaiga M.N., Diele K., and Huxham M. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific reports. 2017. Vol. 7. No. 1. P. 1–11.

51. Ellison J.C. Biogeomorphology of mangroves. Coastal Wetlands. Elsevier. 2019. P. 687–715.

52. Madsen J.D., Chambers P.A., James W.F., Koch E.W., and Westlake D.F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia. 2001. Vol. 444. No. 1–3. P. 71–84.

53. Gamenick I., Jahn A., Vopel K., and Giere O. Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Marine Ecology Progress Series. 1996. Vol. 144. P. 73–85.

54. Venier C., da Silva J.F., McLelland S.J., Duck R.W., and Lanzoni S. Experimental investigation of the impact of macroalgal mats on flow dynamics and sediment stability in shallow tidal areas. Estuarine, Coastal and Shelf Science. 2012. Vol. 112. P. 52–60.

55. Bardach J.E. Transport of calcareous fragments by reef fishes. Science. 1961. Vol. 133. No. 3446. P. 98–99.

56. Bellwood D.R. Carbonate Transport and within-Reef Patterns of Bioerosion and Sediment Release by Parrotfishes (Family Scaridae) on the Great Barrier Reef. Marine Ecology Progress Series. 1995. Vol. 117, No. 1/3. P. 127–136.

57. Frey S.E. and Dashtgard S.E. Seaweed-assisted, benthic gravel transport by tidal currents. Sedimentary Geology. 2012. Vol. 265. P. 121–125.

58. Waters J.M., King T.M., Fraser C.I., and Craw D. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp. Journal of the Royal Society Interface. 2018. Vol. 15. No. 140. P. 1–8.

59. Smith J.M.B. and Bayliss-Smith T.P. Kelp-plucking: coastal erosion facilitated by bull-kelp Durvillaea antarctica at subantarctic Macquarie Island. Antarctic Science. 1998. Vol. 10. No. 4. P. 431–438.

60. Garden C.J. and Smith A.M. The role of kelp in sediment transport: observations from southeast New Zealand. Marine Geology. 2011. Vol. 281. No. 1–4. P. 35–42.

61. Garden C.J. and Smith A.M. Voyages of seaweeds: The role of macroalgae in sediment transport. Sedimentary Geology. 2015. Vol. 318. P. 1–9.

62. Romanenko F.A., Repkina T.Yu., Efimova L.E., and Bulochnikova A.S. Dinamika ledovogo pokrova i osobennosti ledovogo perenosa osadochnogo materiala na prilivnykh osushkakh Kandalakshskogo zaliva Belogo morya (Dynamics of the ice cover and peculiarities of the ice transportation of the sediments at the tidal flats of the Kandalaksha Gulf of the White Sea). Oceanology. 2012. Vol. 52. No. 5. P. 710–720. (in Russ.)

63. Repkina T.Yu., Shevchenko N.V., and Efimova L.E. Statsionarnye nablyudeniya za protsessami ledovogo i biogennogo morfolitogeneza na beregakh Kandalakshskogo zaliva Belogo morya. Geomorfologicheskie resursy i geomorfologicheskaya bezopasnost': ot teorii k praktike (Continuous observations on the processes of ice- and biogenic-induced morpholithogenesis on the White Sea coasts in Kandalaksha Bay In. Geomorphological resources and geomorphological safety: from the theory to the practice). Moscow: MAKS Press Ltd (Publ.), 2015. P. 501–504. (in Russ.)

64. Riisgård H.U. On measurement of filtration rates in bivalves the stony road to reliable data: review and interpretation. Marine Ecology Progress Series. 2001. Vol. 211. P. 275–291.

65. Kautsky N. and Evans S. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series. 1987. Vol. 38. P. 201–212.

66. Haven D.S. and Morales-Alamo R. Aspects of biodeposition by oysters and other invertebrate filter feeders. 1. Limnology and Oceanography. 1966. Vol. 11. No. 4. P. 487–498.

67. Murray J.M., Meadows A., and Meadows P.S. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology. 2002. Vol. 47. No. 1. P. 15–30.

68. Spencer T. Limestone coastal morphology: the biological contribution. Progress in Physical Geography. 1988. Vol. 12. No. 1. P. 66–101.

69. Kelletat D.H. Mediterranean coastal biogeomorphology: processes, forms and sea-level indicators. Bulletin Institut Oceanographique Monaco. 1997. Numero Special. P. 209–226.

70. Coombes M.A. The rock coast of the British Isles: weathering and biogenic processes. Geological Society, London, Memoirs. 2014. Vol. 40. No. 1. P. 57–76.

71. Naylor L.A., Coombes M.A., and Viles H.A. Reconceptualising the role of organisms in the erosion of rock coasts: a new model. Geomorphology. 2012. Vol. 157–158. P. 17–30.

72. Glynn P.W. and Manzello D.P. Bioerosion and coral reef growth: a dynamic balance. In Coral reefs in the Anthropocene. Springer, Dordrecht. 2015. P. 67–97.

73. Neumann A.C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnology and Oceanography. 1966. Vol. 11. No. 1. P. 92–108.

74. Kinsey D.W. Standards of performance in coral reef primary production and carbonate turnover. Barnes D.J. (Ed.). Perspectives on coral reefs. Brian Clouston, Manuka, 1983. P. 209–220.

75. Bellwood D.R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and Ch. sordidus, on the Great Barrier Reef, Australia. Marine Biology. 1995. Vol. 121. No. 3. P. 419–429.

76. Moura D., Gabriel S., Gamito S., Santos R., Zugasti E., Naylor L., Gomes A., Tavares A.M., and Martins A.L. Integrated assessment of bioerosion, biocover and downwearing rates of carbonate rock shore platforms in southern Portugal. Continental Shelf Research. 2012. Vol. 38. P. 79–88.

77. Coombes M.A., Naylor L.A., Viles H.A., and Thompson R.C. Bioprotection and disturbance: seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone. Geomorphology. 2013. Vol. 202. P. 4–14.

78. Zorn M.E., Gingras M.K., and Pemberton S.G. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications. Palaios. 2010. Vol. 25. No. 1. P. 59–72.

79. Teal L.R., Bulling M.T., Parker E.R., and Solan M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology. 2008. Vol. 2. No. 3. P. 207–218.

80. Montserrat F., Van Colen C., Degraer S., Ysebaert T., and Herman P.M. Benthic community-mediated sediment dynamics. Marine ecology progress series. 2008. Vol. 372. P. 43–59.

81. Vekhov V.N. Zostera morskaya (Zostera marina L.) Belogo morya (The White Sea Eel-grass (Zostera marina L.)). Moscow: Moscow State University (Publ.), 1992. 143 p. (in Russ.)

82. Matveeva T.A., Nikitina N.S., and Chernovskaya E.N. Prichiny i sledstviya neravnomernogo raspredeleniya chervei Fabricia sabella i Arenicola marina na litorali (Causes and consequences of uneven spatial distribution of intertidal worms Fabricia sabella and Arenicola marina). Doklady Akademii Nauk SSSR. 1955. Vol. 105. No. 2. P. 370–373. (in Russ.)

83. Meadows P.S. and Tait J. Modification of sediment permeability and shear strength by two burrowing invertebrates. Marine Biology. 1989. Vol. 101. P. 75–82.

84. Decho A.W. and Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017. Vol. 8. Art. 922. P. 1–28.

85. Hubas C., Sachidhanandam C., Rybarczyk H., Lubarsky H.V., Rigaux A., Moens T., and Paterson D.M. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Marine Ecology Progress Series. 2010. Vol. 419. P. 85–94.

86. Wotton R.S. The utiquity and many roles of exopolymers (EPS) in aquatic systems. Scientia marina. 2004. Vol. 68. No. S1. P. 13–21.

87. Gerbersdorf S.U., Manz W., and Paterson D.M. The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments. FEMS Microbiol. Ecol. 2008. Vol. 66. P. 282–294.

88. Madsen K.N., Nilsson P., and Sundbäck K. The influence of benthic microalgae on the stability of a subtidal sediment. Journal of experimental marine biology and ecology. 1993. Vol. 170. No. 2. P. 159–177.

89. Widdows J. and Brinsley M. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Journal of sea Research. 2002. Vol. 48. No. 2. P. 143–156.

90. Stal L.J. Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecological Engineering. 2010. Vol. 36. No. 2. P. 236–245.

91. Urban-Malinga B. Meiobenthos in marine coastal sediments. Geological Society, London, Special Publications. 2014. Vol. 388. No. 1. P. 59–78.

92. Escapa M., Perillo G.M., and Iribarne O. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats. Estuarine, Coastal and Shelf Science. 2008. Vol. 80. No. 3. P. 365–373.

93. Canal-Vergés P., Vedel M., Valdemarsen T., Kristensen E., and Flindt M.R. Resuspension created by bedload transport of macroalgae: implications for ecosystem functioning. Hydrobiologia. 2010. Vol. 649. No. 1. P. 69–76.

94. Defew E.C., Tolhurst T.J., and Paterson D.M. Sitespecific features influence sediment stability of intertidal flats. Hydrology and Earth System Sciences Discussions, European Geosciences Union. 2002. Vol. 6. No. 6. P. 971–982.

95. Kornman B.A. and de Deckere E.M.G.T. Temporal variation in sediment erodibility and suspended sediment dynamics in the Dollard Estuary. Black K.S., Paterson D.M., Cramp A. (Eds.). Sedimentary Processes in the Intertidal Zone. Geological Society, London, 1998. Special Publications. Vol. 139. P. 231–241.

96. Holland A.F., Zingmark R.G., and Dean J.M. Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology. 1974. Vol. 27. No. 3. P. 191–196.

97. Mazda Y., Magi M., Kogo M., and Hong P.N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt marshes. 1997. Vol. 1. No. 2. P. 127–135.

98. Tran Quang Bao. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia. 2011. Vol. 53. No. 3. P. 807–818.

99. Dahdouh-Guebas F. and Jayatissa L.P. A bibliometrical review on pre-and post-tsunami assumptions and facts about mangroves and other coastal vegetation as protective buffers. Ruhuna Journal of Science. 2009. Vol. 4. P. 28–50.

100. Krauss K.W. and Osland M.J. Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany. 2020. Vol. 125. No. 2. P. 213–234.

101. Möller I., Spencer T., French J.R., Leggett D.J., and Dixon M. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science. 1999. Vol. 49. No. 3. P. 411–426.

102. Möller I., Kudella M., Rupprecht F., Spencer T., Paul M., Van Wesenbeeck B.K., Wolters G., Jensen K., Bouma T.J., Miranda-Lange M., and Schimmels S. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience. 2014. Vol. 7. No. 10. P. 727–731.

103. Ford H., Garbutt A., Ladd C., Malarkey J., and Skov M.W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. Journal of vegetation science. 2016. Vol. 27. No. 2. P. 259–268.

104. Christianen M.J.A., van Belzen J., Herman P.M.J., van Katwijk M.M., Lamers L.P.M., van Leent P.J.M., and Bouma T.J. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE. 2013. Vol. 8. No. 5. e62413.

105. Bos A.R., Bouma T.J., de Kort G.L., and van Katwijk M.M. Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuarine, Coastal and Shelf Science. 2007. Vol. 74. No. 1–2. P. 344–348.

106. Borsje B.W., van Wesenbeeck B.K., Dekker F., Paalvast P., Bouma T.J., van Katwijk M.M., and de Vries M.B. How ecological engineering can serve in coastal protection. Ecological Engineering. 2011. Vol. 37. No. 2. P. 113–122.

107. Spalding M.D., Ruffo S., Lacambra C., Meliane I., Hale L.Z., Shepard C.C., and Beck M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean & Coastal Management. 2014. Vol. 90. P. 50–57.

108. Schoonees T., Gijón Mancheño A., Scheres B., Bouma T.J., Silva R., Schlurmann T., and Schüttrumpf H. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries and Coasts. 2019. Vol. 42. P. 1709–1729.

109. Badyukova E.N., Zhindarev L.A., Luk’yanova S.A., Solov’eva G.D., and Shcherbina V.V. Osobennosti sovremennoi dinamiki lagunnykh beregov Kurshskoi kosy, yugo-vostok Baltiki (Peculiarities of recent coastal dynamics of the lagoon of the Kurronian Spit, the SE Baltic). Litodinamika donnoi kontaktnoi zony okeana (The lythodynamics of ocean bottom contact zone). Moscow: GEOS (Publ.), 2009. P. 124–130. (in Russ.)

110. Coombes M.A., Naylor L.A., Thompson R.C., Roast S.D., Gómez-Pujol L., and Fairhurst R.J. Colonization and weathering of engineering materials by marine microorganisms: an SEM study. Earth Surface Processes and Landforms. 2011. Vol. 36. No. 5. P. 582–593.


Review

For citations:


Mokievsky V.O. Мarine biogeomorphology: biotic transformation of marine bottom landforms. Geomorfologiya. 2021;52(3):3-23. (In Russ.) https://doi.org/10.31857/S0435428121030081

Views: 383


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)