Sediment budget assessment of the Ob and the Yenisei
https://doi.org/10.31857/S0435428121030056
Abstract
This paper presents results of comparative analysis of the sediment budgets of the Ob’ and the Yenisei, base on universal erosion equations, RUSLE using 250 m resolution DEM GMTED 2010. Cumulative volumes of sediments accumulated in the stream catchments were estimated calculating the difference between erosion and sediments runoff of the studied basins. Thus, the difference between total erosion (watershed erosion + bank erosion) is (1250 MT/year + 35 MT/year) for the Ob and (315 MT/year + 21.9 MT/year) for the Yenisei. Sediment runoff in the mouths of both rivers estimated based on MSU data is 63.5 MT/year for the Ob and 32.5 MT/year for the Yenisei; Sediment runoff in the mouths estimated based on Roshydromet data is 16 MT/year for the Ob and 2.4 MT/year for the Yenisei. Sediment runoff was used to calculate the total deposition of matter in the catchment area during the transport of sediments from sources to sinks, for the Ob total deposition is 1270 MT/year, for the Yenisei is 335 MT/year. For the unregulated part of the Ob’ catchment, the accumulation was 56.5 MT/year, and for the unregulated part of the Yenisei catchment was 43 MT/year. The coefficient of reduction of sediment runoff (1/SDR) downstream, based on new samplings of sediment runoff in 2018–2019 in the mouths of both, Ob and Yenisei, was 2.3, and for the entire catchment area 20 and 30 respectively. Volume of sediments moved by denudation processes in the basin ends up being redeposited within the same fluvial systems. Thus, under the current hydro-meteorological regime, the large drainage basins in Russia and elsewhere are major depositional systems.
Keywords
About the Authors
V. A. IvanovRussian Federation
Faculty of Geography
Moscow
S. R. Chalov
Russian Federation
Faculty of Geography
Moscow
References
1. Sidorchuk A.Yu. Balans nanosov v erozionno-ruslovykh sistemakh (The balance of sediments in erosion-channel systems). Geomorfologiya (Geomorphology RAS). 2015. (1). P. 14–21. (in Russ.)
2. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K.V., Montanarella L., and Panagos P. An assess-ment of the global impact of 21st century land use change on soil erosion. Nature Communications. 2017. № 1 (8). 2013. https://doi.org/10.1038/s41467-017-02142-7
3. Milliman J.D. River Inputs, 2010, P. 754–761.
4. Panin A.V. Land-ocean sediment transfer in palaeotimes, and implications for present-day natural fluvial fluxes. Sediment Transfer through the Fluvial System (Proceedings of a symposium held in Moscow, August 2004). IAHS Publ. 288. 2004.
5. Erozionno-ruslovye sistemy (Erosive-channel systems). R.S. Chalov, A.Yu. Sidorchuk, V.N. Golosov (Eds.). INFRA, 2017. 698 p. (in Russ.)
6. Gusarov A.V. Osnovnye zakonomernosti sootnosheniya ruslovoi i basseinovoi sostavlyayushchikh erozii i stoka vzveshennykh nanosov v rechnykh basseinakh severnoi Evrazii (Basic regularities of the ratio of the channel and basin components of erosion and runoff of suspended sediments in the river basins of northern Eurasia). Geomorfologiya (Geomorphology RAS). 2015. No. 4. P. 3–20. (in Russ.)
7. Walling D.E. and Collins A.L. Suspended sediment sources in British rivers. Sediment Budgets 1 IAHS Publ. 2005. № April (291). P. 123–133.
8. Frings R.M., Hillebrand G., Gehres N., Banhold K., Schriever S., and Hoffmann T. From source to mouth: Basin-scale morphodynamics of the Rhine River. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2019.04.002, 2019
9. Danielson J.J. and Gesch D.B. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report. 2011–1073. 26 p.
10. Linke S., Lehner B., Dallaire O.C., Ariwi J., Grill G., Anand M., Beames P., Burchard-Levine V., Maxwell S., Moidu H., Tan F., and Thieme M. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Science Data. 2019 Dec 9; 6(1): P. 283–298.
11. Allen G.H. and Pavelsky T. Global extent of rivers and streams. Science. Vol. 361. Issue 6402. 2018. P. 585–588.
12. Pekel J.F., Cottam A., Gorelick N., and Belward A.S. High-resolution mapping of global surface water and its long-term changes. Nature. 2016. Vol. 540. P. 418–422.
13. Vörösmarty C., Meybeck M., Fekete B.M., Sharma K., Green P., and Syvitski J. Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change. 2003. No. 1–2 (39). P. 169–190.
14. Magritskii D.V. Godovoi stok vzveshennykh nanosov rossiiskikh rek vodosbora Severnogo Ledovitogo okeana i ego antropogennye izmeneniya (Annual runoff of suspended sediment Russian river catchment in the Northern Arctic ocean and its anthropogenic changes). Vestnik Moskovskogo universiteta (Bulletin of the Moscow University). Series 5. Geography. 2010. P. 17–24. (in Russ.)
15. Bai Z.G., Dent D.L., Olsson L., and Schaepman M.E. l Global assessment of land degradation and improvement 1: identification by remote sensing. Report 2008/01, FAO/ISRIC-Rome/Wageningen. 2008, 68 p.
16. García-Ruiz J.M., Beguería S., Nadal-Romero E., González-Hidalgo J.C., Lana-Renault N., Sanjuán Y. A meta-analysis of soil erosion rates across the world. Geomorphology. 2015. Vol. 239. P. 160–173.
17. Nauchnye statsionary: realii, nauchnaya problematika i innovatsii (Scientific field station: challenges, research issues and innovations) Tomsk: Grafika (Publ.), 2017. 265 p. (in Russ.)
18. Vol’nov V.V., Boiko A.V., and Chichkarev A.S. Opyt ispol’zovaniya protivoerozionnykh gidrotekhnicheskikh sooruzhenii v bor’be so stokom talykh vod i smyvom pakhotnykh pochv na sklonovykh zemlyakh Altaiskogo kraya (Experience in the use of anti-erosion hydraulic structures in the fight against meltwater runoff and flushing of arable soils on the slope lands of the Altai Territory). Vestnik Altaiskogo agrarnogo universiteta (Bulletin of the Altai State Agrarian University). 2017. P. 42–48. (in Russ.)
19. Bontemps S., Van Bogaert E., Defourny P., Kalogirou V., and Arino O. GLOBCOVER 2009 Products Description and Validation Report. ESA Bulletin. 2011. 53 p.
20. Litvin L.F. Geografiya erozii pochv sel’skokhozyaistvennykh zemel' Rossii (Geography of soil erosion in agricultural lands of Russia). Moscow: Akademkniga (Publ.), 2002. 255 p. (in Russ.)
21. Chalov S.R., Terskii P.N., Efimova L.E., Terskaya A.I., Efimov V.A., and Danilovich I.S. Problemy gidrologicheskogo monitoringa v basseinakh transgranichnykh rek Vostochnoi Evropy (na primere Zapadnoi Dviny) (Problems of hydrological monitoring in the basins of transboundary rivers of Eastern Europe (on the example of the Western Dvina)). Inzhenernye izyskaniya (Engineering surveys). 2019. Vol. 13. P. 32–44. (in Russ.)
22. Kurakova A.A. and Chalov R.S. Razmyvy beregov na shirotnom uchastke srednei Obi i ikh svyaz' s morfologiei rusla (Coast washouts in the latitudinal section of the Middle Ob and their connection with the morphology of the riverbed). Geograficheskii vestnik. 2019. No. 3 (50). P. 34–47. (in Russ).
23. Chalov R.S., Evstigneev V.M., and Zaitsev A.A. Ruslovoi rezhim rek Severnoi Evrazii (v predelakh byvshego SSSR) (Channel regime of the rivers of Northern Eurasia (within the former USSR)). Moscow: Izd-vo MGU (Publ.), 1994. 335 p. (in Russ.)
24. Dunne T., Mertes L.A.K., Meade R.H., Richey J.E., and Forsberg B.R. Exchanges of sediment between the flood plain and the channel of the Amazon River in Brazil. Geological Society of America Bulletin. 1998. Vol. 110. P. 450–467.
25. Panagos P., Borrelli P., Meusburger K., Alewell C., Lugato E., and Montanarella L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy. 2015. https://doi.org/10.1016/j.landusepol.2015.05.021
26. Morgan R.P.C. and Nearing M.A. Handbook of Erosion Modelling. Wiley-Blackwell, New Jer-sey. 2011. 68 p.
27. IUSS Working Group WRB World Reference Base for Soil Resources 2014, updates 2015. International soil classification system for naming soils and creating legends for soil maps. 2015.
28. Sharpley A.N. and Williams J.R. Erosion Productivity Impact Calculator: 1. Model Documenta-tion (EPIC). Technical Bulletin-United State Department of Agriculture. 1990. No. 1768. 235 p.
29. Panagos P., Boni M., Ballabio C., Borrelli P., Meusburger K., Yu B., Klik A., Lim K.J., Yang J.E., Ni J., Miao C., Chattopadhyay N., Sadeghi S.H., Hazbavi Z., Zabihi M., Larionov G.A., Krasnov S.F., Gorobets A.V., Levi Y., Erpul G., Birkel C., Hoyos N., Naipal V., Oliveira P.T.S., Bonilla C.A., Meddi M., Nel W., Al Dashti H., Diodato N., Van Oost K., and Nearing M. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports. 7. 4175. 2017. https://doi.org/10.1038/s41598-017-04282-8
30. Porter C., Morin P., Howat I., Noh M-J., Bates B., Peterman K., Keesey S., Schlenk, M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson, M. , Wethington M.J., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D' Souza C., Cummens P., Laurier F., and Bojesen M. “ArcticDEM”. https://doi.org/10.7910/DVN/OHHUKH, Harvard Data verse, V1, [Accessed 09.12.20].
31. Sidorchuk A.Yu. The fluvial system on the East European plain: sediment source and sink. Geography, Environment, Sustainability. 2018. Vol. 11. Iss. 3. P. 5–20.
Review
For citations:
Ivanov V.A., Chalov S.R. Sediment budget assessment of the Ob and the Yenisei. Geomorfologiya. 2021;52(3):79-89. (In Russ.) https://doi.org/10.31857/S0435428121030056