Preview

Geomorfologiya i Paleogeografiya

Advanced search

The history of the Moksha River valley development in the end of the Late Pleistocene

https://doi.org/10.31857/S043542812103007X

Abstract

Late Pleistocene reconstruction of the lower part of the Moksha River valley (between the mouth of the Tsna River and the mouth of the Moksha River) was completed using mechanical coring and radiocarbon (AMS) dating of alluvium in the river valley bottom. Results revealed that between 40–30 ka BP, the river incised deeper than the present level, due to the increase of the river runoff associated with climatic changes. Later the incision was replaced by the valley infill caused by the drying up of the climate and a lowering of the river runoff, that was more significant during the last glacial maximum (LGM, 23–20 ka BP). Sediments derived from scarcely vegetated slopes activated by cryogenic processes from drainage area caused changes of river’s longitudinal profile due to sediment accumulation. In the Late Glacial time starting from 18.5 ka BP a significant increase in river runoff led to the formation of macromeanders and widening of the valley bottom. The Holocene was characterized by a decrease in runoff and channel parameters, and narrowing of the meander belt of the river. During interglacial, sediment accumulation in the channel was negligible because of decreased sediment supply from the eroding basin.

About the Authors

E. Yu. Matlakhova
Lomonosov Moscow State University; Institute of Water Problems RAS
Russian Federation

Faculty of Geography

Moscow



V. Yu. Ukraintsev
Institute of Water Problems RAS; Institute of Geography RAS
Russian Federation

Moscow



A. V. Panin
Institute of Water Problems RAS; Institute of Geography RAS
Russian Federation

Moscow



References

1. Panin A.V., Sidorchuk A.Yu., and Chernov A.V. Makroizluchiny rusel rek ETS i problemy paleogidrologicheskikh rekonstruktsii. (River macromeanders in the European part of Russia and problems of paleohydrological reconstructions). Vodnye resursy (Water resources). 1992. No. 4. P. 93–96. (in Russ.)

2. Panin A.V., Sidorchuk A.Ju. and Chernov A.V. Historical background to floodplain morphology: examples from the East European Plain. Floodplains: Interdisciplinary Approaches. Geological Society, London, Special Publications. 1999. No. 163. P. 217–229.

3. Sidorchuk A.Yu., Borisova O.K., and Panin A.V. Pozdnevaldaiskie paleorusla rek Russkoi ravniny (Large palaeochannels of Late Weichselian age in the Russian Plain). Izv. RAN. Ser geogr. 2000. No. 6. P. 73–78. (in Russ.)

4. Sidorchuk A., Panin A., and Borisova O. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum–Late Glacial time // Geological Society of America Special Paper. 2011. Vol. 473. P. 1–25. https://doi.org/10.1130/2011.2473(01).

5. Panin A.V., Sidorchuk A.Yu., Baslerov S.V., Borisova O.K., Kovalyukh N.N., and Sheremetskaya E.D. Osnovnye etapy istorii rechnykh dolin tsentra Russkoi ravniny v pozdnem valdae i golotsene: rezul’taty issledovanii v srednem techenii r. Seim (Main events in the history of river valleys in the central Russian Plain in the Late Weichselian and Holocene: the middle Sejm River case study). Geomorfologiya (Geomorphology RAS). 2001. No. 2. P. 19–34. (in Russ.)

6. Panin A.V., Sidorchuk A.Yu., and Vlasov M.V. Moshchnyi pozdnevaldaiskii rechnoi stok v basseine Dona (High Late Valdai runoff in the Don river basin). Izv. RAN. Ser. geogr. 2013. No. 1. P. 118–129. (in Russ.) https://doi.org/10.15356/0373-2444-2013-1-118-129.

7. Paleogeograficheskie zakonomernosti razvitiya morfolitosistem Russkoi ravniny. Raionirovanie. Stratigrafiya. Geoekologiya (Paleogeographic patterns of development of the morpholithosystems of the Russian Plain. Zoning. Stratigraphy. Geoecology). N.G. Sudakova, S.S. Faustov (Eds.). Moscow: MGU (Publ.), 2013. 95 p. (in Russ.)

8. Geologicheskaya karta chetvertichnykh otlozhenii Ryazanskoi oblasti. Masshtab 1:500000 (Geological map of the Quaternary deposits of the Ryazan region. Scale 1 : 500000). N.I. Sychkin (Ed.). Ministerstvo prirodnykh resursov Rossiiskoi federatsii. 1998. 6 sheets. (in Russ.)

9. Geologiya SSSR. Tom IV. Tsentr Evropeiskoi chasti SSSR. Geologicheskoe opisanie (Geology of USSR. Vol. 4. Center of European part of USSR. Geological description). M.: Nedra (Publ.), 1971. 742 p. (in Russ.)

10. Geologicheskaya karta dochetvertichnykh otlozhenii Ryazanskoi oblasti. Masshtab 1:500000. (Geological map of pre-Quaternary deposits of the Ryazan region. Scale 1:500000). N.I. Sychkin (Ed.). Ministerstvo prirodnykh resursov Rossiiskoi federatsii. 1998. 6 sheets. (in Russ.)

11. Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009. No. 51(1). P. 337–360.

12. Reimer P., Austin W., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S., Fogtmann-Schulz A., Friedrich R., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., and Talamo S. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. 2020. No. 62 (4). P. 725–757.

13. Matlakhova E.Yu. and Panin A.V. Rol’ eolovykh protsessov v razvitii rechnykh dolin tsentra Vostochno-Evropeiskoi ravniny v pozdnem valdae (The role of aeolian processes in the development of the river valleys in the central of the East European Plain in the Late Valdai). Geomorfologicheskie resursy i geomorfologicheskaya bezopasnost': ot teorii k praktike. Sb. materialov Vseros. konf. “VII Shchukinskie Chteniya” (Geomorphological resources and geomorphological safety: from theory to practice. Sat. materials Vseros. Conf. “VII Shchukin Readings”). M.: MAKS Press (Publ.), 2015. P. 459–462. (in Russ.)

14. Krivtsov V.A., Vorob’ev A.Yu., Vodorezov A.V., and Zazovskaya E.P. Osobennosti formirovaniya poimy reki Oki v ee srednem techenii (na primere Spasskogo rasshireniya) (Features of the floodplain formation of the Oka River in its middle flow: the case study of the “Spasskoe” local widening). Geomorfologiya (Geomorphology RAS). 2020. No. 3. P. 56–71. https://doi.org/10.31857/S0435428120030050. (in Russ.)

15. Krivtsov V.A., Vodorezov A.V., Vorob’ev A.Yu., and Tobratov S.A. Osobennosti stroeniya i formirovaniya poimy reki Oki v ee Spasskom rasshirenii (Features of the structure and formation of the floodplain of the Oka River in its Spassky expansion). Vestnik Ryazanskogo gosuniversiteta. 2014. No. 4/49. P. 153–172. (in Russ.)

16. Krivtsov V.A., Vorob’ev A.Yu., and Komarov M.M. Reka Oka i nekotorye osobennosti razvitiya rel’efa yuzhnoi chasti Meshcherskoi nizmennosti v chetvertichnoe vremya (The Oka river and the evolution of relief in the southern part of the Meschera lowland in the Quaternary period). Vestnik Ryazanskogo gosuniversiteta. 2016. No. 2/51. P. 180–196. (in Russ.)

17. Vorob’ev A.Ju., Kadyrov A.S., and Zaitsev D.G. Morfologicheskie osobennosti rel’efa poimy reki Oki v ee Konstantinovskom suzhenii (Morphological characteristics of the Oka floodplain in its narrow part near the village of Konstantinovo). Vestnik Ryazanskogo gosuniversiteta. 2019. No. 2/63. P. 109–125. (in Russ.)

18. Dury G.H. General theory of meandering valleys. US Geol. Surv. Prof. Paper. 1964. Vol. 452-A. 67 p.

19. Starkel L. The place of the Vistula river valley in the late Vistulian – early Holocene evolution of the European valleys. European River Activity and Climatic Change During the Lateglacial and Early Holocene. Palaoklimaforschung. Palaeoclimate Research. 1995. Vol. 14. P. 75–88.

20. Vandenberghe J. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International. Vol. 91. 2002. P. 17–23.

21. Sidorchuk A.Yu., Panin A.V., and Borisova O.K. Klimaticheski obuslovlennye izmeneniya rechnogo stoka na ravninakh severnoi Evrazii v pozdnelednikov’e i golotsene (Climate-induced changes in surface runoff on the North-Eurasian plains during the Late Glacial and Holocene). Vodnye resursy (Water Resources). 2008. Vol. 35. P. 386–396. (in Russ.) https://doi.org/10.1134/S0097807808040027.

22. Vandenberghe J., and Sidorchuk A. Large Palaeomeanders in Europe: Distribution, Formation Process, Age, Environments and Significance. Palaeohydrology. Geography of the Physical Environment. Springer Cham. 2020. P. 169–186.

23. Kislov A.V., Panin A.V., and Toropov P.A. Sovremennye izmeneniya i paleodinamika urovnya Kaspiiskogo morya kak etalon dlya verifikatsii dannykh klimaticheskogo modelirovaniya (Present-day variations and paleodynamics of the Caspian Sea level as a standard for climate modeling data verification). Meteorologiya i gidrologiya (Russian Meteorology and Hydrology). 2014. No. 39 (5). P. 328–334. (in Russ.) https://doi.org/10.3103/S1068373914050069.

24. Kislov A.V., Panin A.V., and Toropov P. Current status and palaeostages of the Caspian Sea as a potential evaluation tool for climate model simulations. Quaternary International. 2014. Vol. 345. P. 48–55. https://doi.org/10.1016/j.quaint.2014.05.014.

25. Yanina T., Sorokin V., Bezrodnykh Yu., and Romanyuk B. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quaternary International. 2018. Vol. 465A. P. 130–141. https://doi.org/10.1016/j.quaint.2017.08.003.

26. Yanina T., Bolikhovskaya N., Sorokin V., Romanyuk B., Berdnikova A., and Tkach N. Paleogeography of the Atelian regression in the Caspian Sea (based on drilling data). Quaternary International. 2021. Vol. 590. P. 73–84. https://doi.org/10.1016/j.quaint.2020.07.023.

27. Panin A., Adamiec G., Buylaert J.-P., Matlakhova E., Moska P., and Novenko E. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quaternary Science Reviews. 2017. Vol. 166. P. 266–288. https://doi.org/10.1016/j.quascirev.2016.12.002.

28. Kurbanov R., Murray A., Thompson W., Svistunov M., Taratunina N. and Yanina T. First reliable chronology for the Early Khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas. 2021. Vol. 50. Iss. 1. P. 134–146. https://doi.org/10.1111/bor.12478.

29. Borisova O., Sidorchuk A., and Panin A. Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. Catena. 2006. Vol. 66. P. 53–73. https://doi.org/10.1016/j.catena.2005.07.010.

30. Sidorchuk A., Panin A., and Borisova O. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology. 2009. Vol. 113. P. 137–157. https://doi.org/10.1016/j.geomorph.2009.03.007.

31. Panin A. and Matlakhova E. Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. Catena. 2015. Vol. 130. P. 46–61. https://doi.org/10.1016/j.catena.2014.08.016.


Review

For citations:


Matlakhova E.Yu., Ukraintsev V.Yu., Panin A.V. The history of the Moksha River valley development in the end of the Late Pleistocene. Geomorfologiya. 2021;52(3):105-115. (In Russ.) https://doi.org/10.31857/S043542812103007X

Views: 304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)