Modern gully erosion in forest and forest-steppe landscapes of the east of the Russian Plain
https://doi.org/10.31857/S0435428121040064
Abstract
The spatial and temporal assessment of modern gully erosion was carried out for a large region (more than 68000 km2 ) of the eastern Russian Plain located at the intersection of forest (subzones of southern taiga, mixed and broad-leaved forests) and forest-steppe landforms within the Republic of Tatarstan. The choice of the territory was caused by the high density of gullies established more than half a century ago, as well as by the availability of multi-temporal cartographic data about the gully network density obtained using a unified methodology. The current gully density was determined by visual interpretation of high and ultra-high resolution satellite images for 2010–2017. A geospatial database was created. For this purpose the system of interpretation features of gully forms was developed. Gully maps were developed based on their talweg type using slope, bank, and bottom characteristics as criteria. Two indicators were used to quantify gully erosion: total length per unit area and density of the gully network, where the basin approach was used as an operational territorial unit. Created geo database compiles gullies characteristics for 1674 basins. A total of 9142 gullies were identified in the study area with an average length of 74 meters. The density of the gully network is currently distributed irregularly over the area and averages 12 m/km2 , reaching a maximum of 405 m/km2 . The change in the number of gullies spatially coincides with the distribution of the density of the gully network, being on average 0.2 units/km2 , the maximum being 5 units/km2 . Among morpho-genetic types, slope gullies dominate (90%), with bank and bottom gullies representing 7% and 3%, respectively. The temporal dynamics of the areal shape and linear growth of active gullies mainly of the slope type was determined by combining each gully shape on two multi-temporal satellite images obtained over a relatively short period (2009–2016). The dynamics were determined for 304 gullies. The average linear growth of gullies is 0.6 m/year, and the average areal growth is 28 m2 /year. The spatial and temporal dynamics of the gully density in the river basins was determined by comparing the data of mapping of the modern gully network with the results obtained by mapping gullies on aerial photographs of 1960–1970s. Overall, a significant decrease in gully density, indicating the slowing down of gully formation processes, was established. The average density of the gully network in all the basins decreased by 230 m/km2 in the study area. Against the background of the general reduction, only in some basins there was a slight increase in gully density. Minimum values of gully density now correlate with the basins with high indices of grassing of the territory. Changes in hydro-climatic conditions (increased winter temperatures, reduced depth of soil freezing and surface snowmelt runoff), reduction in plowed area, gully evolution (transformation from gully to balka stage), planting of protective forest belts has determined the decreasing trend of gully development in the study area.
About the Authors
O. P. YermolaevRussian Federation
Kazan
R. A. Medvedeva
Russian Federation
Kazan
M. А. Ivanov
Russian Federation
Kazan
References
1. Dedkov A.P. Ekzogennoe rel’efoobrazovanie v Kazansko-Ul’yanovskom Povolzh’e (Exogenous relief formation in the Kazan-Ulyanovsk Volga region). Kazan: Izd-vo KGU (Publ.), 1970. 256 p. (in Russ.)
2. Ovrazhnaya eroziya vostoka Russkoi ravniny (Gully erosion of the East of the Russian Plain). A.P. Dedkov (Ed.). Kazan.: Izd-vo KGU (Publ.), 1970. 140 p. (in Russ.)
3. Vanmaercke M., Poesen J., Van Mele B., Demuzere M., Bruynseels A., Golosov V., Fernando J., Bezerra R., Bolysov S., Dvinskih A., Frankl A., Fuseina Y., Guerra A., Haregeweyn N., Ionita I., Imwangana F., Moeyersons J., Moshe I., Samani A., Niacsu L., Nyssen J., Otsuki Y., Radoane M., Rysin I., Ryzhov Y., and Yermolaev O. How fast do gully headcuts retreat. Earth Science Reviews. 2016. No. 154. P. 336–355. https://doi:10.1016/j.earscirev.2016.01.009.
4. Seginer I. Gully development and sediment yield. Journal of Hydrology. 1966. No. 4. Р. 236–253. https://doi.org/10.1016/0022-1694(66)90082-5.
5. Blong R.J., Graham O.P., and Veness J.A. The role of sidewall processes in gully development. Earth Surface Processes and Landforms. 1982. No. 7. P. 381–85.
6. Ohmori H., Speight J.G., and Takeuchi K. Stratigraphic background of gully development of the Pekina catchment in the Mt. Lofty ranges, South Australia. Geographical Reports of Tokyo Metropolitan University. 1986. No. 21. P. 65–84.
7. Smith B.J. Effects of climate and land-use change on gully development: an example from northern Nigeria. Zeitschrift für Geomorphologie. 1982. No. 44. P. 33–51.
8. Ionita I. Gully development in the Moldavian Plateau of Romania. Catena. 2006. No. 68. P. 133–140.
9. Ghimire S.K., Higaki D., and Bhattarai T. Gully erosion in the Siwalik Hills, Nepal: estimation of sediment production from active ephemeral gullies. Earth Surf. Process. Landf. 2006. 31. P. 155–165.
10. Castillo C. and Gómez J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Science Reviews. No. 160. 2016. P. 300–319. http://dx.doi.org/10.1016/j.earscirev.2016.07.009.
11. Ryzhov Yu.V. Formirovanie ovragov na yuge Vostochnoi Sibiri (Formation of ravines in the South of Eastern Siberia). Novosibirsk: Geo (Publ.), 2015. 180 p. (in Russ.)
12. Zaitseva M.Yu. and Rysin I.I. Vliyanie geologo-geomorfologicheskikh faktorov na rost ovragov v Udmurtii (Influence of geological and geomorphological factors on the growth of ravines in Udmurtia). Vestn. Udmurt. un-ta. Ser. Biologiya. Nauki o Zemle, 2017. Vol. 27 (1). P. 87–97. (in Russ.)
13. Gafurov A.M. and Yermolayev O.P. Automatic Gully Detection: Neural Networks and Computer Vision. Remote Sensing. 2020. No. 12. P. 1743. https://doi.org/10.3390/rs12111743.
14. Chen Y., Jiao J., Wei Y., Zhao H., Yu W., Cao B., Xu H., Yan F., Wu D., and Li H. Accuracy assessment of the planar morphology of valley bank gullies extracted with high resolution remote sensing imagery on the Loess Plateau. Int. J. Environ. Res. Public Health. China. 2019. No. 16. 369 р. https://doi.org/10.3390/ijerph16030369.
15. Perevedentsev Yu.P., Vereshchagin M.A., Shantalinskii K.M., Naumov E.P., and Sokolov V.V. Klimat i okruzhayushchaya sreda Privolzhskogo federal’nogo okruga (Climate and environment of the Volga Federal District). M.A. Vereshchagin (Ed.). Kazan: KFU (Publ.), 2013. 274 p. (in Russ.)
16. Ermolaev O.P., Igonin M.E., Bubnov A.Yu., and Pavlova S.V. Landshafty Respubliki Tatarstan. Regional’nyi landshaftno-ekologicheskii analiz (Landscapes of the Republic of Tatarstan. Regional landscape and environmental analysis). O. P. Ermolaev (Ed.). Kazan: Slovo (Publ.), 2007. 411 p. (in Russ.)
17. Rechnye basseiny Evropeiskoi chasti Rossii (River basins of the European part of Russia). http://bassepr.kpfu.ru/ (in Russ.)
18. Zelenaya kniga Respubliki Tatarstan (Green Book of the Republic of Tatarstan). Min-vo okhrany okruzhayushchei sredy i prirodnykh resursov RT, Ekolog.fond Resp. Tatarstan (Ministry of Environmental Protection and Nature resources of the Rep. Tatarstan, Ecol. fund of the Republic of Tatarstan). N.P. Torsuev (Ed.). Kazan: Izd-vo KGU (Publ.), 1993. 420 p. (in Russ.)
19. Gosudarstvennyi doklad o sostoyanii prirodnykh resursov i ob okhrane okruzhayushchei sredy Respubliki Tatarstan (2011–2019) (State Report on the situation of natural resources and environmental Protection of the Republic of Tatarstan). https://eco.tatarstan.ru/gosdoklad.htm. (in Russ.)
20. Lyuri D.I., Goryachkin S.V., Karavaeva N.A., Denisenko E.A., and Nefedova T.G. Dinamika sel’skokhozyaistvennykh zemel' Rossii v KhKh veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of Agricultural Lands in Russia in XX Century and Postagrogenic Restoration of Vegetation and Soils). Moscow: GEOS (Publ.), 2010. 416 p. (in Russ.)
21. Litvin L.F., Kiryukhina Z.P., Krasnov S.F., and Dobrovol’skaya N.G. Geografiya dinamiki zemledel’cheskoi erozii pochv na evropeiskoi territorii Rossii (Geography of dynamics of agricultural soil erosion in the European territory of Russia). Eurasian Soil Science. 2017. No. 11. P. 1390–1400. (in Russ.)
22. Yermolayev O.P, Rysin I.I, and Golosov V.N. Mapping assessment of gully erosion in the east of the Russian plain. Geomorphology. 2017. No. 2. P. 38–51. (in Russ.).
23. Ermolaev O.P., Medvedeva R.A., and Platoncheva E.V. Metodicheskie podkhody k monitoringu protsessov erozii na sel’skokhozyaistvennykh zemlyakh Evropeiskoi chasti Rossii s pomoshch’yu materialov kosmicheskikh s"emok (Methodological approaches to the monitoring of erosion processes on agricultural lands of the European part of Russia using satellite imagery). Uch. zap. Kazansk. un-ta. 2017. Vol. 159. No. 4. P. 668–680. (in Russ.)
24. Labutina I.A. Deshifrirovanie aerokosmicheskikh snimkov (Interpretation of Satellite Images). Moscow: Aspect Press (Publ.), 2004. 184 p. (in Russ.)
25. Litvin L.F. and Kiryukhina Z.P. Vliyanie antropogennykh faktorov i ikh izmenenii v razlichnykh landshaftnykh zonakh na izmeneniya tempov smyva pochv za poslednie 30 let (Influence of anthropogenic factors and their changes in various landscape zones on changes in the rate of soil flushing over the past 30 years). Prostranstvenno-vremennye zakonomernosti razvitiya sovremennykh protsessov prirodno-antropogennoi erozii na Russkoi ravnine (Spatial and temporal patterns of development of modern processes of natural and anthropogenic erosion on the Russian plain). V.N. Golosov, O.P. Ermolaev (Eds.). Kazan: Izd-vo AN RT (Publ.), 2019. P. 254–257. (in Russ.)
26. Golosov V., Yermolaev O., Litvin L., Chizhikova N., Kiryukhina Z., and Safina G. Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degradation and Development. 2018. Vol. 29. No. 8. P. 2658–2667.
27. Gogol’ F.V. Dinamika tsentrov deistviya atmosfery pervogo estestvennogo sinopticheskogo raiona i ikh vliyaniya na izmeneniya klimata Respubliki Tatarstan v zimnee vremya (Dynamics of the atmospheric action centers of the first natural synoptic region and their influence on climate changes in the Republic of Tatarstan in winter). PhD thesis. Kazan: Izd-vo KGU (Publ.), 2010. 27 p. (in Russ.)
28. Rysin I.I., Golosov V.N., Grigor’ev I.I., and Zaitseva M.Yu. Vliyanie izmenenii klimata na dinamiku tempov rosta ovragov Vyatsko-Kamskogo mezhdurech’ya (Influence of climate changes on the dynamics of growth rates of ravines in the Vyatka-Kama interfluves). Geomorfologiya (Geomorphology RAS). 2017. No. 1. P. 90–102. (in Russ.)
29. Safina G.R. and Golosov V.N. Izmeneniya vnutrigodovogo raspredeleniya stoka malykh rek yuzhnoi poloviny Evropeiskoi chasti Rossii v svyazi s izmeneniyami klimata (Changes in the intra-annual distribution of the flow of small rivers in the southern half of the European part of Russia in connection with climate changes). Uch. zap. Kazan.un-ta. 2018. Vol. 160 (1). P. 111–125. (in Russ.)
30. Koronkevich N.I. and Dolgov S.V. O gidrologicheskoi roli rel’efa v yuzhnoi chasti Russkoi ravniny (On the hydrological role of relief in the southern part of the Russian plain). Geomorfologiya (Geomorphology RAS).
Review
For citations:
Yermolaev O.P., Medvedeva R.A., Ivanov M.А. Modern gully erosion in forest and forest-steppe landscapes of the east of the Russian Plain. Geomorfologiya. 2021;52(4):28–41. (In Russ.) https://doi.org/10.31857/S0435428121040064