Preview

Geomorfologiya i Paleogeografiya

Advanced search

Long-term dynamics of linear, areal and volumetric growth of ravines on the territory of Udmurtia

https://doi.org/10.31857/S0435428122040058

Abstract

The Instrumental methods of studying linear, areal and volumetric growth of ravines on agricultural lands over the period from the early 2000s to 2021 are considered. The objects of the study include 6 ravines of various types (two the near-drainage divide, near-valley, top, bottom and floodplain), developing within 6 key areas, where their catchment areas are occupied mainly by plowed agricultural land. The purpose of the research is to identify the relationship between the linear, areal, and volumetric growth of ravines to their morphological and morphometric characteristics. The research methods included a geodetic survey of the top part of the ravines, their edges, thalwegs and transverse profiles using an electronic tachometer.

For most of the considered ravines, the maximum washouts were observed in 2001, when the linear headward retreat, areal, and volumetric varied within 13.8–21.8 m, (arithmetic average for the entire observation period was 0.68–3.45 m), from 25.1 to 436.7 m2, (arithmetic mean – 11.12–109.02 m2), and from 398 to 3068 m3, (arithmetic mean – 27.52–889.80 m3), respectively. There were exceptions when linear increments had a maximum in 2011, for example, the near-drainage divide ravine No. 1 (2.3 m) and the top ravine No. 4 (3.25 m). For all types of ravines, the main statistical indicators of the values of linear, area and volume increments for the study period were calculated.

It was found that in most cases there is a clear dependence between the considered indicators, which is most typical for a floodplain ravine with a short (2013–2021) observation period. Here, the relationship of linear growth with area (r = 0.985) and volume (r = 0.984) washouts turned out to be very high. The relationship of linear growth with areal (r = 0.819) and volumetric washouts (r = 0.792) at the bottom of a single-top gully on the “Kuregovo” site turned out to be quite high. A high positive relationship of linear growth with areal (r = 0.792) and volumetric erosion (r = 0.756) was noted at the near-valley gully on the right slope of the valley of the Vyatka River (“Crimean Sludka”).

A moderate relationship between the linear growth and the areal (r = 0.629) and volumetric washouts (r = 0.429) was found for single-top near-drainage divide ravine in the key area “Vyatskoye”. A very weak positive relationship between linear growth and areal (r = 0.348) and volumetric washouts (r = 0.326) wasfound for the near-drainage divide gully growing with three headcuts in the Kulyushevo area. No relationship was found between linear growth with both areal (r = 0.280) and volumetric erosion (r = 0.289) only for the top ravine (“Varzi-Yatchi”), growing in the upper reaches on the bottom of the Holocene gulch. This ravine has with three headcuts expanding in three directions because of the emergence of new runoff troughs due to agricultural activity.

For all of the considered ravines, a very high correlation was found between the area and volume growth (r = 0.969 ± 0.074). The asynchrony of the linear, area and volume increments of the studied ravines is not always associated with climate factors, which can be explained by the influence of slope processes, and in some cases by suffusion. A smooth change over the years of areal and volumetric erosion and a rather sharp fluctuation in the values of the linear growth in the headcuts of ravines, regardless of the type and their morphological and morphometric features, were revealed.

About the Authors

I. I. Grigorev
Udmurt State University, Izhevsk
Russian Federation


I. I. Rysin
https://f-ien.udsu.ru/about/kafedra-ekologii-i-prirodopolzovaniya
Udmurt State University, Izhevsk
Russian Federation


References

1. Akmarov P.B., Knyazeva O.P., and Rysin I.I. Agroclimatic potential of agricultural efficiency. Vestnik Udmurtskogo un-ta. Ser. Biologiya. Nauki o Zemle. Iss. 2. 2014. P. 89–96. (in Russ.)

2. Bazarova L.D. Erosive landforms of the Chikoy Depression. Geologiya, paleovulkanologiya i relʼef Zabaikalʼya. Ulan-Ude: CF SB AS USSR (Publ.), 1986. P. 153–162. (in Russ.)

3. Bolysov S.I. and Tarzaeva N.V. Meteorological factor in the development of regressive erosion in the South-West of the Moscow region. Geomorfologiya. 1996. No. 4. P. 97–103. (in Russ.)

4. Butakov G.P., Zorina E.F., Nikolskaya I.I., Rysin I.I., Serebrennikova I.A., and Yusupova V.V. Trends in the development of gully erosion in European Russia. Erozionnye i ruslovye protsessy. M.: Izd-vo MGU (Publ.), 2000. Iss. 3. P. 52–62. (in Russ.)

5. Caraballo-Arias N.A. Morphometric and hydraulic geometry assessment of a gully in SW Spain. N.A. Caraballo-Arias, C. Conoscenti, C. Di Stefano, V. Ferro, and A. Gуmez-Gutierrez. Geomorphology. 2016. No. 274. P. 143–151. https://doi.org/10.1016/j.geomorph.2016.09.021

6. Chen Y., Jiao J., Wei Y., Zhao H., Yu W., Cao B., Xu H., Yan F., Wu D., and Li H. Accuracy Assessment of the Planar Morphology of Valley Bank Gullies Extracted with High Resolution Remote Sensing Imagery on the Loess Plateau. International Journal of Environmental Research and Public Health. 2019. No. 16. 369 p. https://doi.org/10.3390/ijerph16030369

7. Dedkov A.P., Rysin I.I., and Chernysheva T.N. Gully erosion on arable lands of Europe. Geomorfologiya. 1993. No. 2. P. 3–13. (in Russ.)

8. Frankl A., Stal C., Abraha A., Nyssen J., Rieke-Zapp D., De Wulf A., and Poesen J. Detailed recording of gully morphology in 3D through image-based modelling. Catena. 2015. Vol. 127. P. 92–101. https://doi.org/10.1016/j.catena.2014.12.016

9. Gafurov A.M. and Usmanov B.M. Evaluation of intensity and dynamics of soil erosion by method of terrestrial laser scanning. Erozionnye, ruslovye i ustʼevye protsessy. M.: MSU (Publ.), 2016. P. 81–90. (in Russ.)

10. Gafurov A.M., Rysin I.I., Golosov V.N., Grigorev I.I., and Sharifullin A.G. Estimation of the modern growth of the ravine tops of the southern megasclone of the East European plain using a set of instrumental methods. Vestnik Mosk. Un-ta. Ser. 5. Geografiya. 2018. No. 5. P. 61–71. (in Russ.)

11. Grigorev I.I. and Rysin I.I. Research of technogenic and agricultural ravines in Udmurtia. Vestnik Udm. Un-ta. Ser. Biol. Nauki o Zemle. 2006. Iss. 2. P. 83–91. (in Russ.)

12. Grigorev I.I. and Rysin I.I. Assessment of linear and areal growth of ravines using instrumental methods (on the example of Udmurtia. Geomorfologiya. 2021. T. 52. No. 3. P. 64–78. (in Russ) https://doi.org/10.31857/S0435428121030044

13. Grigorev I.I. and Rysin I.I. Tekhnogennye ovragi na territorii Udmurtii (Technogenic ravines on the territory of Udmurtia). Kazanʼ: Izd-vo Udmurt. Un-ta (Publ.), Izd-vo Akademii nauk RT (Publ.), 2017. 190 p. (in Russ.)

14. Grigorev I.I. Using the software complex “Credo” to determine the volume and area of ravines. Vestnik Udm. Un-ta. Ser. Biol. Nauki o Zemle. 2009. Iss. 2. P. 141–145. (in Russ.)

15. Grigorev I.I. Spatiotemporal analysis of growth rates of technogenic ravines on the territory of Udmurtia. Eroziya pochv, ovrazhnaya erozia, ruslovye protsessy: teoreticheskie i prikladnye voprosy. M.: MSU (Publ.), 2011. P. 90–99. (in Russ.)

16. Gusarov A.V., Rysin I.I., Sharifullin A.G., and Golosov V.N. Assessment of the current trend of erosion-accumulative processes in a small ploughed watershed using caesium-137 as a chronomarker (South of the Udmurt Republic). Geomorfologiya. 2019. No. 2. P. 37–56. (in Russ.)

17. Ionita I. Gully development in eastern Romania: a case study from Falciu Hills. I. Ionita, L. Niacsu, G. Petrovici, A.M. Blebea-Apostu. Natural Hazards. 2015. No. 79 (1). P. 113–138. https://doi.org/10.1007/s11069-015-1732-8

18. Ionita I. Gully development in the Moldavian Plateau of Romania. Catena. 2006. Vol. 68. P. 133–140. https://doi.org/10.1016/j.catena.2006.04.008

19. Khoboso E.S., Heinz R.B., Timothy D., and Mbulisi S. An assessment of gully erosion along major armoured roads in south-eastern region of South Africa: a remote sensing and GIS approach. Geocarto International. 2016. Vol. 31. Iss. 2. P. 225–239. https://doi.org/10.1080/10106049.2015.1047412

20. Kociuba W., Janicki G. Rodzik J., and Stępniewski K. Comparison of volumetric and remote sensing methods (TLS) for assessing the development of a permanent forested loess gully. Natural Hazards. 2015. No. 79. P. 139–158. https://doi.org/10.1007/s11069-015-1807-6

21. Korotina N.M. The growth rate of ravines in the Ulyanovsk Volga region. Geomorfologiya. 1981. No. 4. P. 78–83. (in Russ.)

22. Lakin G.F. Biometriya (Biometrics). M.: Vyssshaya shkola (Publ.), 1990. 352 p. (in Russ.)

23. Li W., Fu H., Yu L., Gong P., Feng D., Li C., and Clinton N. Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. International J. Remote Sensing. 2016. No. 23 (37). P. 5632–5646. https://doi.org/10.1080/01431161.2016.1246775

24. Marzolff I., Ries J.B., and Poesen J. Short-term versus mediumterm monitoring for detecting gully-erosion variability in a Mediterranean environment. Earth Surface Processes and Landforms. 2011. No. 12 (36). P. 1604–1623. https://doi.org/10.1002/esp.2172

25. Nazarov N.N. Ovrazhnaya eroziya v Prikamʼe (Gully erosion in Prikamʼe). Permʼ: Izd-vo Perm. un-ta (Publ.), 1992. 104 p. (in Russ.)

26. Ollobarren P., Giménez R., Campo-Bescós M.A., and Casalí J. Soil factors controlling gully erosion: an experimental approach. Submitted Abstracts 7th International Symposium on Gully Erosion 23-27 may 2016, West Lafayette, USA. Р. 20.

27. Perevedencev Yu.A., Shumihina A.V., Shantalinskij K.M., and Guryanov V.V. Dangerous hydrometeorological phenomena on the territory of the Volga Federal District. Meteorologiya i gidrologiya. 2019. No. 12. P. 20–30. (in Russ.)

28. Perevedencev Yu.P., Sherstyukov B.G., Shantalinskij K.M., Guryanov V.V., and Auhadeev T.R. Climatic changes in the Volga Federal District in the XIX–XXI centuries. Meteorologiya i gidrologiya. 2020. No. 6. P. 36–46. (in Russ.)

29. Rafaello B. and Reis E. Controlling factors of the size and location of large gully systems: A regression-based exploration using reconstructed pre-erosion topography. Catena. 2016. Vol. 147. P. 621–631. https://doi.org/10.1016/j.catena.2016.08.014

30. Rishikeshan C.A., Katiyar S.K., and Mahesh V.N.V. Detailed Evaluation of DEM Interpolation Methods in GIS Using DGPS Data. International Conference on Computational Intelligence and Communication Net-works. 2014. P. 666–671. https://doi.org/10.1109/CICN.2014.148

31. Rodzik J., Furtak T., and Zglobicki W. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surface Processes and Landforms. 2009. Vol. 34. No. 14. P. 1938–1950. https://doi.org/10.1002/esp.1882

32. Rychagov G.I. Obshchaya geomorphologiya (General geomorphology). M.: MSU (Publ.), 2006. 416 p. (in Russ.)

33. Rysin I.I. About the current trend of gully erosion in Udmurtia. Geomorfologiya. 1998. No. 3. P. 92–101. (in Russ.)

34. Rysin I.I. Ovrazhnaya erozia v Udmurtii (Gully erosion in Udmurtia). Izhevsk: UdSU (Publ.), 1998. 274 p. (in Russ.)

35. Rysin I.I., Golosov V.N., Grigorev I.I., and Zajceva M.Yu. The influence of climate change on the dynamics of the growth rates of the ravines of the Vyatka-Kama interfluve. Geomorfologiya. 2017. No. 1. P. 90–103. (in Russ.). https://doi.org/10.15356/0435-4281-2017-1-90-103

36. Rysin I.I., Grigorev I.I., and Zaitseva M.Yu. Results of research of gully erosion in Udmurtia for the last two decades. Nauka Udmurtii. 2015. No. 3 (73). P. 150–164. (in Russ.)

37. Rysin I.I. (Ed). Atlas Udmurtskoi Respubliki (Atlas of the Udmurt Republic). M.: Feoriya (Publ.), 2016. 282 p. (in Russ.)

38. Rysin I.I., Grigorev I.I., Zaitseva M.Yu., and Golosov V.N. Dynamics of the linear retreat of gully heads within the Vyatka-Kama interfluve at the turn of 20th century. Vestn. Mosk. Un-ta. Ser. 5. Geogr. 2017. No. 1. P. 63–72. (in Russ.)

39. Ryzhov Yu.V. Formirovanie ovragov na yuge Vostochnoi Sibiri (Formation of ravines in the south of Eastern Siberia). Novosibirsk: GEO (Publ.), 2015. 180 p. (in Russ.)

40. Ryzhov Yu.V. Gully erosion in the intermountain basins of the Southwestern Baikal Region. Geomorfologiya. 1998. No. 3. P. 68–73. (in Russ.)

41. Satdarov A.Z. Methods of research of regressive growth of ravines: advantages and disadvantages. Uch. Zapiski Kazan. Un-ta. Ser. Estestv. nauki. 2016. No. 158 (2). P. 277–292. (in Russ.)

42. Selʼskoe khozyaistvo Udmurtskoi Respubliki (Agriculture of the Udmurt Republic. Izhevsk: Territorialnyi organ Federalnoi sluzhby gosudarstvennoi statistiki po UR (Territorial body of the Federal State Statistics Service for UR), 2019. 122 p. (in Russ.)

43. Tarmaev V.A. The intensity of the formation of linear erosion in the basin Kounalaki (Transbaikalia). Geografiya i prirodnye resursy. 1992. No. 1. P. 98–102. (in Russ.)

44. Usmanov B., Yermolaev O., and Gafurov A. Estimates of slopeerosion intensity utilizing terrestrial laser scanning. Proceedings of the International Association of Hydrological Sciences. 2015. Vol. 367. P. 59–65. https://doi.org/10.5194/piahs-367-59-2015

45. Vanmaercke M., Poesen J., Van Mele B., Demuzere M., Bruynseels A., Golosov V., Bezerra J.F.R., Bolysov S., Dvinskih A., Frankl A., Fuseina Yu., Guerra A.J.T., Haregeweyn N., Ionita I., Makanzu Imwangana F., Moeyersons J., Moshe I., Nazari Samani A., Niacsu L., Nyssen J., Otsuki Y., Radoane M., Rysin I., Ryzhov Yu., Yermolaev O. How fast do gully headcuts retreat? Earth-Science Reviews. 2016. No. 154. Р. 336–355. https://doi.org/10.1016/j.earscirev.2016.01.009

46. Veretennikova M.V., Zorina E.F., Kovalev S.N., and Lyubimov B.P. Stationary studies of the processes of ravine formation at the Borovsky educational and scientific training ground of the Faculty of Geography of Moscow State University. Eroziya pochv i ruslovye protsessy. Iss. 14. Nauchnyi red. R.S. Chalov. M.: Izd-vo MGU (Publ.), 2003. P. 76–92. (in Russ.)

47. Ximeng Xu, Fenli Zheng, Chao Qin, and Hongyan Wu. Active stage gully morphological characteristics in the Loess Hilly-gully Region based on 3D laser scanning technique. Submitted Abstracts 7th International Symposium on Gully Erosion 23-27 may 2016, West Lafayette, USA. 2016. Р. 24–25.

48. Zorina E.F., Nikolskaya I.I., and Kovalev S.N. Method for determining the intensity of growth of ravines. Geomorfologiya. 1993. No. 3. P. 66–75. (in Russ.)

49.


Supplementary files

1. Рисунок 1
Subject
Type Исследовательские инструменты
View (752KB)    
Indexing metadata ▾
2. Рисунок 2
Subject
Type Исследовательские инструменты
View (776KB)    
Indexing metadata ▾
3. Рисунок 3
Subject
Type Исследовательские инструменты
View (434KB)    
Indexing metadata ▾
4. Рисунок 4
Subject
Type Исследовательские инструменты
View (433KB)    
Indexing metadata ▾
5. Для рецензента
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Grigorev I.I., Rysin I.I. Long-term dynamics of linear, areal and volumetric growth of ravines on the territory of Udmurtia. Geomorfologiya. 2022;53(4):56-73. (In Russ.) https://doi.org/10.31857/S0435428122040058

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)