The modern state of radar interferometry using for estimation of the land surface displacements
https://doi.org/10.31857/S0435428122020067
Abstract
The article is devoted to radar interferometry as a tool for the work of a geomorphologist engaged in modern landform processes. Differential radar interferometry (DInSAR) is based on radar imaging of the Earth’s surface from spacecraft, whose orbital trajectory is recorded with high accuracy. This makes possible, by measuring the phase difference of the reflected radio signal over the same parts of the Earth’s surface at a fixed time interval, to determine the values of terrain displacements along the line of sight of the satellite sensor, vertical or horizontal lines. This method, despite the fact that it has significant limitations, allows almost realtime tracking of the terrain deformations caused by various geomorphological processes. Traditional applications of InSAR are monitoring of technogenic subsidence or bedding of soil, seimogenic and volcanogenic movements of the surface, landslides and other slope processes, relief cryogenic transformation. At the limit, this method by using radar images in the C-band (for example, the twin satellites Sentinel-1A and -1B), makes possible to distinguish sub-centimeter vertical movements. In this case, the survey frequency is 1–2 weeks, the covered areas can range from hundreds of square meters to tens of thousands of square kilometers, and the specific registered vertical velocities in various publications vary in the range from the first cm / year to 1 m / event, and sometimes more (in the case of earthquakes or landslides). As an example, the result of calculating the rates of displacements of the Earth’s surface in the interfluve of the Yenisei and Bolshaya Kheta is given – they vary over the area from about –3 to +2 cm in a period of less than 2 weeks in July-August 2019, and are associated with fluvial and thermokarst processes.
About the Authors
A. L. EntinRussian Federation
Faculty of Geography
Moscow
P. G. Mikhailukova
Russian Federation
Faculty of Geography
Moscow
A. I. Kedich
Russian Federation
Faculty of GeographyA Lomonosov MSU
Moscow
S. V. Kharchenko
Russian Federation
Faculty of GeographyA Lomonosov MSU
Moscow
References
1. Wright T. J., Parsons B. E., and Lu Z. Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters. 2004. Vol. 31. No. 1. P.1–5. https://doi.org/10.1029/2003GL018827
2. Lohman R.B. and Simons M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochemistry, Geophysics, Geosystems. 2005. Vol. 6. No. 1. P. 1–12. https://doi.org/10.1029/2004GC000841
3. Zakharov A.I., Yakovlev O.I., and Smirnov V.M. Sputnikovyj monitoring Zemli: radiolokacionnoe zondirovanie poverhnosti (Satellite monitoring of the Earth: radar sensing of the surface). Moscow: KRASAND (Publ.), 2012. 248 p.
4. Bonforte A., Ferretti A., Prati C., Puglisi G., and Rocca F. Calibration of atmospheric effects on SAR interferograms by GPS and local atmosphere models: First results. Journal of Atmospheric and Solar-Terrestrial Physics. 2001. No. 63. P. 1343–1357. https://doi.org/10.1016/S1364-6826(00)00252-2
5. Chaabane F., Avallone A., Tupin F., Briole P., and Maître H. A Multitemporal Method for Correction of Tropospheric Effects in Differential SAR Interferometry: Application to the Gulf of Corinth Earthquake. Transactions on Geoscience and Remote Sensing. 2007. Vol. 45. No. 6. P. 1605–1615. https://doi.org/10.1109/TGRS.2007.894026
6. Li Z., Muller J.P., Paul C., and Fielding E.J. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research. 2005. Vol. 110. No. B3.
7. Onn F. and Zebker H.A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. Journal of Geophysical Research. 2006. Vol. 111. No. B09102. https://doi.org/10.1029/2005JB004012
8. Remy D., Bonvalot S., Briole P., and Murakami M. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: application to Sakurajima volcano (Japan). Earth and Planetary Science Letters. 2013. Vol. 213. P. 299–310. https://doi.org/10.1016/S0012-821X(03)00331-5
9. Gitis V.G., Derendyayev A.B., and Petrova E.N. GIStekhnologiya analiza geodinamicheskikh protsessov (GIS-technology for analysis of geodynamic processes). Geomorfologi. Sovremennye metody i tekhnologii tsifrovogo modelirovaniya relyefa v naukakh o Zemle. Vyp. 6. Moscow: Media-press (Publ.), 2014. P 53–64.
10. Casu F., Manconi A., Pepe A., and Lanari R. Deformation Time-Series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique. Transactions on Geoscience and Remote Sensing. 2011. Vol. 49. No. 7. P.195–210. https://doi.org/10.1109/TGRS.2010.2104325
11. Hooper A., Zebker H., Segall P., and Kampes B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters. 2004. Vol. 31. No. L23611. P. 1–5. https://doi.org/10.1029/2004GL021737
12. Hooper A., Prata F., and Sigmundsson F. Remote Sensing of Volcanic Harards and Their Precursors. Proceeding of the IEEE. 2012. Vol. 100. No. 10. P. 2908– 2930. https://doi.org/10.1109/JPROC.2012.2199269
13. Lanari R., Oscar M., Manunta M., Mallorquí J.J., Berardino P., and Sansosti E. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing. 2004. Vol. 42. No. 7. P.1377–1386. https://doi.org/10.1109/TGRS.2004.828196
14. Peltier A., Bianchi M., Kaminski E., Komorowski J.C., Rucci A., and Staudacher T. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophysical Research Letters. 2010. Vol. 37. No. 12. P. 1–5. https://doi.org/10.1029/2010GL043846
15. Pinel V., Poland M.P., and Hooper A. Volcanology: Lessons learned from Synthetic Aperture Radar imagery. Journal of Volcanology and Geothermal Research. 2014. Vol. 289. P. 81–113. https://doi.org/10.1016/j.jvolgeores.2014.10.010
16. Tizzani P., Berardino P., Casu F., Euillades P., Manzo M., Ricciardi G.P., Zeni G., and Lanari R. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment. 2007. Vol. 108. P. 277– 289. https://doi.org/10.1016/j.rse.2006.11.015
17. Farina P., Colombo D., Fumagall A., Marks F., and Moretti S. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Engineering geology. 2006. Vol. 88. No. 3–4. P. 200–217. https://doi.org/10.1016/j.enggeo.2006.09.007
18. Bovenga F., Pasquariello G., Pellicani R., Refice A., and Spilotro G. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena. 2017. Vol. 151. P. 49–62. https://doi.org/10.1016/j.catena.2016.12.006
19. Feokistov A.A., Zakharov A.I., Denisov P.V., and Gusev M.A. INSAR and DINSAR data processing software development for Russian space SAR. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2011. Vol. 8. No. 2. P. 310–317. (in Russ.)
20. Ferretti A., Prati C., and Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing. 2000. Vol. 38. No. 5. P.2202–2212. https://doi.org/10.1109/36.868878
21. Pepe A. and Calò F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences. 2017. Vol. 7. No. 12. P. 1264. https://doi.org/10.3390/app7121264
22. Baldina E.A., Mikhaylyukova P.G., and Troshko K.A. Experience of using radar satellite imagery data to create thematic maps. Vestnik Moskovskogo universiteta. Serija 5: Geografija. 2019. No. 4. P. 110–118. (in Russ.) 23. ESA InSAR S1 EW [Electronic data]. Access way: http://step.esa.int/docs/tutorials/S1TBX%20TOPSAR%20Interferometry%20with%20Sentinel-1%20Tutorial_v2.pdf (access date: 20.01.2021).
23. Baranov Yu.B., Kantemirov Yu.I., Kiselevski E.V., and Nikiforov S.Е. Application of the radar interferometry in the mine survey control of the surface deformations caused by the development of oil and gas fields. Izvestija vysshih uchebnyh zavedenij. Gornyj zhurnal. 2008. No. 2. P. 42–43. (in Russ.)
24. Berman L.B. and Zakharov A.I. Contribution of Space Radar Interferometry into Study of Yamal’s Large Gas Fields Reservoirs. Case Study: Yamburg Field. Zemlja iz kosmosa: naibolee jeffektivnye reshenija. 2011. No. 8. P. 57–70. (in Russ.)
25. Yevtyushkin A.V. and Filatov A.V. Estimation of Earth surface displacements in area of intensive oil production in Western Siberia by SAR interferometry using ENVISATASAR and ALOSPALSAR data. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2009. Vol. 6. No. 2. P. 46–53. (in Russ.)
26. Filatov A.V., Yevtyushkin A.V., and Vasiliev Yu.V. Detection of deformations of industrial objects on territory of oil deposits by radar interferometry. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2011. Vol. 8. No. 2. P. 157–165. (in Russ.)
27. Filatov A.V., Yevtyushkin A.V., and Vasiliev Yu.V. Long-term geodynamic monitoring of oil and gas fields in Western Siberia by InSar technique. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2012. Vol. 9. No. 2. P. 39–47. (in Russ.)
28. Wasowski J., Bovenga F., Nutricato R., Nitti D.O., and Chiaradia M.T. Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields. Innovative Infrastructure Solutions. 2018. Vol. 3. No. 1. P. 1–7. https://doi.org/10.1007/s41062-018-0176-x
29. Mikhaylyukova P.G. and Tutubalina O.V. Mapping of volcanic eruption based on InSAR. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2016. Vol. 13. No. 2. P. 153–163. (in Russ.)
30. Anantrasirichai N., Biggs J., Albino F., Hill P., and BullD. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. Journal of Geophysical Research: Solid Earth. 2018. Vol. 123. No. 8. P. 6592–6606. https://doi.org/10.1029/2018JB015911
31. Moran S., Kwoun O., Masterlark T., and Lu Z. On the absence of deformation signals from InSAR interferograms bracketing the 1995–1996 and 1999 eruptions of Shishaldin Volcano, Alaska. Journal of Volcanology and Geothermal Research. 2006, Vol. 150. P. 119–131. https://doi.org/10.1016/j.jvolgeores.2005.07.013
32. Bondur V.G., Zakharova L.N., Zakharov A.I., Chimitdorzhiev T.N., Dmitriev A.V., and Dagurov P.N. Monitoring of Landslide Processes by Means of L-Band Radar Interferometric Observations: Bureya River Bank Caving Case. Issledovanie zemli iz kosmosa. 2019. No. 5. P. 3–14. (in Russ.)
33. Dong J., Liao M., Xu Q., Zhang L., Tang M., and Gong J. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Engineering Geology. 2018. Vol. 240. P. 95– 109. https://doi.org/10.1016/B978-0-12-818464-6.00006-8
34. Strozzi T., Klimeš J., Frey H., Caduff R., Huggel C., Wegmüller U., and Rapre A.C. Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote Sensing of Environment. 2018. Vol. 217. P.111–125. https://doi.org/10.1016/j.rse.2018.08.014
35. Di Martire D., Tessitore S., Brancato D., Ciminelli M.G., Costabile S., Costantini M., Graziano G.V., Minati F., Ramondini M., and Calcaterra D. Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements. Catena. 2016. Vol. 137. P. 406–421. https://doi.org/10.1016/j.catena.2015.10.002
36. Qu T., Xu Q., Shan W., Li Z., Shan M., and Dai K. Deformation monitoring of high-latitude permafrost region of northeastern China with time series inSAR technique. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives. 2019. Vol. 42. No. 2/W13. P. 1777– 1780. https://doi.org/10.5194/isprs-archives-XLII-2-W131777-2019
37. Liu L., Zhang T., and Wahr J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. Journal of Geophysical Research: Earth Surface. 2010. Vol. 115. No. F03023. P. 1–14. https://doi.org/10.1029/2009JF001547
38. Chymitdorzhiev T.N., Zakharov A.I., Tatkov G.I., Haptanov V.B., Dmitriev A.V., Budaev R.C., and Cybenov J.B. Study of Soils Cryogenic Deformation in Selenga River Delta by Means of SAR Interferometry and Georadar Sounding. Issledovanie zemli iz kosmosa. 2011. No. 5. P. 58–63. (in Russ.)
39. Ofeigsson B.G., Hooper A., Sigmundsson F., Sturkell E., and Grapenthin R. Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. Journal of Geophysical Research: Solid Earth. 2011. Vol.116. No. B5. https://doi.org/10.1029/2010JB007576
40. Fujiwara S., Yarai H., Kobayashi T., Morishita Y., Nakano T., Miyahara B., Nakai H., Miura Y., Ueshiba H., Kakiage Y., and Une H. Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry. Earth, Planets and Space. 2016. Vol. 68. P. 1–17. https://doi.org/10.1186/s40623-016-0534-x
41. Fielding E.J., Sangha S.S., Bekaert D.P., Samsonov S.V., and Chang J.C. Surface deformation of North-Central Oklahoma related to the 2016 Mw 5.8 Pawnee earthquake from SAR interferometry time series. Seismological Research Letters. 2017. Vol. 88. No. 4. P. 971–982.
42. Roccheggiani M., Tamburini A., Tirincanti E., and Menichetti M. Automated detection of surface ruptures associated with the 2016 Central Italy earthquake sequence by Sentinel-1 SAR interferometry data. Proceedings of the 9th International INQUA meeting on Paleoseismology, Active Tectonics and Archeoseismology. 2018. P. 229–232.
43. Mikhailov V.O., Kiseleva E.A., Arora K., Timoshkina E.P., Smirnov V.B., Chadda R., Ponomarev A.V., and Shrinagesh D. New Data on the Olyutorskii Earthquake Acquired via SAR Interferometry. Journal of Volcanology and Seismology. 2018. Vol. 12. No. 3. P. 213–220. https://doi.org/10.1134/S0742046318030053
44. Fielding E.J., Liu Z., Stephenson O.L., Zhong M., Liang C., Moore A., Yun S.H., and Simons M. Surface Deformation Related to the 2019 Mw 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets. Seismological Research Letters. 2020. Vol. 91. No. 4. P. 2035–2046. https://doi.org/10.1785/0220190302
45. Lambiel C., Delaloye R., Strozzi T., Lugon R., and Raetzo H. ERS InSAR for assessing rock glacier activity. Proceedings of the Ninth International Conference on Permafrost, Fairbanks, Alaska. 2008. Vol. 1. P. 1019– 1025. https://doi.org/10.13140/2.1.1695.1681
46. Liu L., Millar C.I., Westfall R.D., and Zebker H.A. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR. The Cryosphere. 2013. Vol. 7. No. 4. P. 1109– 1119. https://doi.org/10.5194/tc-7-1109-2013,2013
Review
For citations:
Entin A.L., Mikhailukova P.G., Kedich A.I., Kharchenko S.V. The modern state of radar interferometry using for estimation of the land surface displacements. Geomorfologiya. 2022;53(2):27-42. (In Russ.) https://doi.org/10.31857/S0435428122020067