Preview

Geomorfologiya i Paleogeografiya

Advanced search

Landscape and climate changes in the Preboreal in the northwestern European Russia

https://doi.org/10.31857/S0435428122030051

Abstract

High-resolution multi-proxy studies of lake sediments, including AMS 14C dating, lithology, loss-on-ignition measurements, pollen analysis and identification of plant macrofossils, of Lake Seliger (57°17'N, 33°04'Е) and five other lacustrine records from the adjacent areas used for comparison, make it possible to reconstruct the main changes in the productivity of lakes and vegetation development in response to the short-term climatic oscillations during the Late Glacial and early Holocene. The analysis showed that lacustrine sedimentation at all these sites began 13–14.5 cal kyr BP, in the Allerød Interstadial, when spruce, birch and pine began to spread in the northwest of European Russia forming the open woodlands. A substantial cooling in the Younger Dryas caused a rapid decline of forest communities and a re-advance of the tundra-steppe vegetation with scattered groups of trees in the protected habitats. The composition of lake sediments changed everywhere in a similar way – from predominantly mineral deposits in the Late Glacial to those with high organic contents (gyttja) in the early Holocene. Following the rapid warming at the Late Glacial/Holocene transition, woodlands formed by birch and, later, pine expanded again over the area. A short-term cooling 11.4–11.2 cal kyr BP, coeval with the Preboreal Oscillation observed in the Greenland ice-core records, most clearly manifested itself by a decrease in the proportion of organic matter in lake sediments. It also interrupted or slowed down the expansion of birch and pine forests and caused a new spread of open grassland vegetation. However, the impact of this cooling on the vegetation development and lake ecosystems in the northwest of European Russia was probably weaker than in western and central Europe. At the beginning of the late Preboreal, there was a new rapid shift to a warmer and more humid climate, when birch forests expanded again, followed later by pine. Further warming during the Boreal brought about the introduction of broadleaved tree species into forest communities and a decrease in the landscape role of birch forests. At this time, some lakes were filled, and lacustrine sedimentation was replaced by the formation of peat.

About the Authors

O. K. Borisova
Institute of Geography RAS
Russian Federation


N. N. Naryshkina
Institute of Geography RAS
Russian Federation


E. A. Konstantinov
Institute of Geography RAS
Russian Federation


A. V. Panin
Institute of Geography RAS
Russian Federation


References

1. Amon L., Veski S., Heinsalu A., and Saarse L. Timing of Lateglacial vegetation dynamics and respective palaeoenvironmental conditions in southern Estonia: evidence from the sediment record of Lake Nakri. J. Quat. Sci. 2012. Vol. 27. P. 169–180.

2. Bogdel I.I., Vlasov B.P., Ilves E.O., and Klimanov V.A. The Sudoble section is a stratotype of the reconstruction of paleogeographical conditions of the Holocene of Central Belarus. Istoriya ozer v SSSR. Tom 1 (History of lakes in the USSR. Vol. 1). Tallinn: Rotaprint AN ESSR (Publ.), 1983. P. 30–32 (in Russ.)

3. Bos J.A.A., van Geel B., van der Plicht J., and Bohncke S.J.P. Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis of Dutch high-resolution multiproxy records. Quat. Sci. Rev. 2007. Vol. 26. P. 1927–1950.

4. Brauer A., Endres C., and Negendank J.F.W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 1999. Vol. 61. P. 17–25.

5. Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009. Vol. 51. No. 1. P. 337–360.

6. Elina G.A., Arslanov Kh.A., Kuznetsov O.L., Antipin V.K., Tertichnaya T.V., and Chernov S.B. Chronology of stages of vegetation development in the Holocene in the southeast of Fennoscandia (according to standard spore-pollen diagrams). Palinologiya v Rossii. Tom 2. (Palynology in Russia. Vol. 2). Moscow: Moscow State University (Publ.), 1995. P. 37–55 (in Russ.)

7. Filimonova L.V. Standard spore-pollen diagrams of the Late Glacial and Holocene of Middle Karelia. Palinologiya v Rossii. Tom 2. (Palynology in Russia. Vol. 2). Moscow: Moscow State University (Publ.), 1995. P. 86–103 (in Russ.)

8. Grachev A.M. and Severinghaus J.P. A revised +10 ± 4°C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants. Quat. Sci. Rev. 2005. Vol. 24. P. 513–519.

9. Heiri O., Lotter A.F., and Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 2001. Vol. 25. P. 101–110.

10. Khotinski N.A., Aleshinskaya Z.V., Guman M.A., Klimanov V.A., and Cherkinski A.E. A new scheme for periodization of landscape and climate changes in the Holocene. Izvestiya Akademii Nauk SSSR. Seriya Geograficheskaya. 1991. No. 3. P. 30–42 (in Russ.)

11. Kobashi T., Severinghaus J., and Barnola J.-M. 4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth Planet. Sci. Lett. 2008. Vol. 268. No. 3. P. 397–407.

12. Konstantinov E.A., Panin A.V., Karpukhina N.V., Bricheva S.S., Borisova O.K., Naryshkina N.N., Gurinov A.L., and Zakharov A.L. The riverine past of Lake Seliger. Water Resources. 2021. Vol. 48. No. 5. P. 635–645. https://doi.org/10.1134/S0097807821050110

13. Kremenetski K.V., Borisova O.K., and Zelikson E.M. The Late Glacial and Holocene history of vegetation in the Moscow region. Paleontological J. 2000. Vol. 34. Suppl. 1. P. S67–S74.

14. Novenko E.Yu., Eremeeva A.P., and Chepumaya A.A. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Veg. Hist. Archaeobot. 2014. Vol. 23. P. 109–119. https://doi.org/10.1007/s00334-013-0418-y

15. Novik A., Punning J.-M., and Zernitskaya V. The development of Belarusian lakes during the Late Glacial and Holocene. Estonian J. Earth Sci. 2010. Vol. 59. P. 63–79. https://doi.org/10.3176/earth.2010.1.05

16. Ostashkov weather station: http://meteo.ru/data

17. Puusepp L. and Kangur M. Linking diatom community dynamics to terrestrial vegetation changes: a paleolimnological case study of Lake Ķūži, Vidzeme Heights (Central Latvia). Estonian J. Ecol. 2010. Vol. 59. P. 259–280. https://doi.org/10.3176/eco.2010.4.02

18. Rasmussen S.O., Andersen K.K., Svensson A.M., Steffensen J.P., Vinther B.M., Clausen H.B., Siggaard-Andersen M.L., Johnsen S.J., Larsen L.B., Dahl-Jensen D., Bigler M., Rothlisberger R., Fischer H., Goto-Azuma K., Hansson M.E., and Ruth U. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmospheres. 2006. Vol. 111. D06102. https://doi.org/10.1029/2005JD006079

19. Rastitel’nost’ evropeiskoi chasti SSSR (Vegetation of the European Part of the USSR). S.A. Gribova, T.I. Isachenko, and E.M. Lavrenko (Eds.). L.: Nauka (Publ.), 1980. 429 p.

20. Reimer P.J., Austin W.E., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S.M., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., and Talamo S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. 2020. Vol. 62. P. 725–757. https://doi.org/10.1017/RDC.2020.41

21. Seppä H. and Hicks S. Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat. Sci. Rev. 2006. Vol. 25. P. 1501–1516. https://doi.org/10.1016/j.quascirev.2005.12.002

22. Stockmarr J. Tablets with spores used in absolute pollen analysis. Pollen et Spores. 1971. Vol. 13. P. 615–621.

23. Subetto D.A., Wohlfarth B., Davydova N.N., Sapelko T.V., Björkman L., Solovieva N., Wastegård S., Possnert G., and Khomutova V.I. Climate and environment on the Karelian Isthmus, northwestern Russia, 13000–9000 cal. yrs BP. Boreas. 2002. Vol. 31. No. 1. P. 1–19. https://doi.org/10.1111/j.1502-3885.2002.tb01051.x

24. van der Plicht J., van Geel B., Bohncke S.J.P., Bos J.A.A., Blaauw M., Speranza A.O.M., Muscheler R., and Björck S. The Preboreal climate reversal and a subsequent solar-forced climate shift. J. Quat. Sci. 2004. Vol. 19. P. 263–269. https://doi.org/10.1002/jqs.835

25. Wohlfarth B., Lacourse T., Bennike O., Subetto D., Tarasov P., Demidov I., Filimonova L., and Sapelko T. Climatic and environmental changes in north-western Russia between 15,000 and 8000 cal yr BP: a review. 2007. Quat. Sci. Rev. Vol. 26. P. 1871–1883. https://doi.org/10.1016/j.quascirev.2007.04.005


Review

For citations:


Borisova O.K., Naryshkina N.N., Konstantinov E.A., Panin A.V. Landscape and climate changes in the Preboreal in the northwestern European Russia. Geomorfologiya. 2022;53(3):19-28. (In Russ.) https://doi.org/10.31857/S0435428122030051

Views: 229


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)