Vegetation changes in Yenisei Siberia over the last 4700 years: new palaeoecological data from Igarka area; Krasnoyarsk Region
https://doi.org/10.31857/S0435428122030129
Abstract
The paper deals with new palaeoecological reconstructions for the last ca. 4700 years based on detailed AMS-radiocarbon dating, pollen, plant macrofossils and macroscopic charcoal records from peat sequence, obtained from the mire near Igarka (Yenisei Siberia). The data obtained testify to the widespread of middle taiga larch forests with a high proportion of Abies sibirica, Picea obovata and Pinus sibirica over the study area between 4700 and 3600 cal. years BP. Сlimate warming caused the northward shift of the boundaries of the vegetation zones in the Yenisei Siberia and the expansion of Abies sibirica range by 200 km to the north compared to the modern one. Starting from ca. 3600 cal. years BP the forest cover began to gradually decrease, and the middle taiga vegetation gave way to sparse larch and birch-larch forests with the participation of spruce and Siberian pine and treeless vegetation characteristic of the northern taiga. The vegetation pattern of the region became close to the modern one around 2600 cal. years BP. Macroscopic charcoal analysis revealed that biomass burning was low until the last 500 cal. years, with the exception of an episode of a strong fire 3600–3500 cal. years BP. Fire activity intensified in the late 14th and early 15th centuries AD, obviously due to anthropogenic impact.
Keywords
About the Authors
E. Yu. NovenkoRussian Federation
N. G. Mazei
Russian Federation
D. A. Kupryanov
Russian Federation
A. E. Shatunov
Russian Federation
R. A. Andreev
Russian Federation
E. A. Makarova
Russian Federation
K. A. Borodina
Russian Federation
O. V. Rudenko
Russian Federation
A. S. Prokushkin
Russian Federation
E. M. Volkova
Russian Federation
References
1. Andreev A.A., Tarasov P.E., Klimanov V.A., Melles M., Lisitsyna O.M., and Hubberten H.-W. Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene. Quaternary International. 2004. No. 122. P. 69–84. https://doi.org/10.1016/j.quaint.2004.01.032
2. Andreev A.A., Tarasov P.E., Siegert C., Ebel T., Klimanov V.A., Melles M., Bobrov A.A., Dereviagin A.Yu., Lubinski D.J., and Hubberten H.-W. Late Pleistocene and Holocene vegetation and climate on the northern Taymyr Peninsula, Arctic Russia. Boreas. 2003. No. 32. P. 484–505. https://doi.org/10.1111/j.1502-3885.2003.tb01230.x
3. Areals of trees and shrubs of USSR. Moscow: Nauka-press (Publ.), 1977. 164 p. (in Russ.).
4. Beck H., Zimmermann N., McVicar T., Vergopolan N., Berg A., and Wood E.F. Present and future KöppenGeiger climate classification maps at 1-km resolution. Scientific Data. 2018. No. 5. 180214. https://doi.org/10.1038/sdata.2018.2140
5. Beug H.J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Munich Publisher: Verlag Friedrich Pfeil, 2004. 542 p.
6. Blaauw M. and Christen J.A. Flexible paleoclimate age depth models using an autoregressive gamma process. Bayesian Analysis. 2011. No. 3. P. 457–474. https://doi.org/10.1214/11-BA618
7. Bleuten W. and Lapshina E.D. Carbon Storage and Atmospheric Exchange by West Siberian Peatlands. Utrecht–Tomsk, 2001. 172 p.
8. Conedera M., Tinner W., Neff C., Meurer M., Dickens A.F., and Krebs P. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews. 2009. No. 28. P. 555–576. https://doi.org/10.1016/j.quascirev.2008.11.005
9. Fewster R.E., Morris P.J., Swindles G.T., Gregoire L.J., Ivanovic R.F., Valdes P.J., and Mullan D. Drivers of Holocene palsa distribution in North America. Quaternary Science Reviews. 2020. No. 240. 106337. https://doi.org/10.1016/j.quascirev.2020.106337
10. Flora of Central Siberia. Chapter 1. Novosibirsk, 1979. 535 p. (in Russ.).
11. Flora of Central Siberia. Chapter 2. Novosibirsk, 1979. 511 p. (in Russ.).
12. Grimm E. TILIA and TILIA*GRAPH.PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods Newsletter. 1990. No. 4. P. 5–7.
13. Grimm E. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers, Geosciences. 1987. No. 13. P. 13–35.
14. Higuera P.E., Brubaker L.B., Anderson P.M., Hu F.S., and Brown T.A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs. 2009. No. 79. P. 201–219. https://doi.org/10.1890/07-2019.1
15. Higuera P.E., Peters M.E., Brubaker L.B., and Gavin D. Understanding the origin and analysis of sediment charcoal records with a simulation model. Quaternary Science Reviews. 2007 No. 26. P. 1790–1809. https://doi.org/10.1016/j.quascirev.2007.03.010
16. IPCC 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Electronic data]. Access way: https://www.ipcc.ch/srocc/cite-report/ (access date: 10.01.2022).
17. Kats N.Ya., Kats S.V., and Skobeeva E.I. Atlas of plant residues in peat. Moscow: Nedra. 1977. 371 p. (in Russ.).
18. Katz N.Ya. Types of bogs of the USSR and Western Europe and from geographical distribution. Moscow: State Publishing House of Geographical Literature, 1948. 318 p. (in Russ.).
19. Khomichevskaya L.A. On the residual vein-polygonal character of bumpy peat bogs in the Igarsky district. Essays of Regional and Historical Cryology. 1962. No. 19. P. 80–88. (in Russ.).
20. Klemm J., Herzschuh U., Pisaric M.F.J., Telford R., Heim B., and Pestryakova L.A. Pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2013. No. 386. P. 702–713. https://doi.org/10.1016/j.palaeo.2013.06.033
21. Konstantinova G.S. About cryogenic formations in the area of the Big Khantaysky threshold (Permafrost rocks of various regions of the USSR). Moscow: Izd-vo AN SSSR (Publ.), 1963. P. 112–120. (in Russ.).
22. Levkovskaya G.M. Zonal features of modern vegetation and abstract spore-pollen spectra of Western Siberia Methodological issues of palynology. Moscow: Izd-vo AN SSSR (Publ.), 1973. P. 116–120. (in Russ.).
23. MacDonald G.M., Velichko A.A., Kremenetski C.V., Borisova O.K., Goleva A.A., Andreev A., Cwynar L.C., Riding R.T., Forman S.L., Edwards T.W.D., Aravena R., Hammarlund D., Szeicz J.M., and Gattaulin V.N. Holocene treeline history and climate change across Northern Eurasia. Quaternary Research. 2000. No. 53. P. 302–311. https://doi.org/10.1006/qres.1999.2123
24. Mayewski P.A., Rohling E.E., Stager J.C., Karlen W., Maascha K.A., Meekere D., Meyersona E.A., Gassef F., van Kreveldg Sh., Holmgrend K., Lee-Thorph J., Rosqvistd G., Racki F., Staubwasserj M., Schneiderk R.R., and Steig E.J. Holocene climate variability. Quaternary Research. 2004. No. 62. P. 243–255. https://doi.org/10.1016/j.yqres.2004.07.001
25. Mazei N.G. and Novenko E.Yu. The use of propionic anhydride in the sample preparation for pollen analysis. Conservation Research. 2021. No. 3. P. 110–112. https://doi.org/10.24189/ncr.2021.036
26. Mooney S. and Tinner W. The analysis of charcoal in peat and organic sediments. Mires and Peat. 2011. No. 7. P. 1–18.
27. Moore P.D., Webb J.A., and Collinson M.E. Pollen Analysis. Blackwell: Oxford, 1991. 216 p.
28. Niemeyer B., Klemm J., Pestryakova L.A., and Herzschuh U. Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. Review of Palaeobotany and Palynology. 2015. No. 221. P. 71–82. https://doi.org/10.1016/j.revpalbo.2015.06.008
29. Novenko E.Y., Kupryanov D.A., Mazei N.G., Prokushkin A.S., Phelps L.N., Buri A., and Davis B.A.S. Evidence that modern fires may be unprecedented during the last 3400 years in permafrost zone of Central Siberia, Russia. Environmental Research Letters. 2022. No. 17, 025004. https://doi.org/10.1088/1748-9326/ac4b53
Review
For citations:
Novenko E.Yu., Mazei N.G., Kupryanov D.A., Shatunov A.E., Andreev R.A., Makarova E.A., Borodina K.A., Rudenko O.V., Prokushkin A.S., Volkova E.M. Vegetation changes in Yenisei Siberia over the last 4700 years: new palaeoecological data from Igarka area; Krasnoyarsk Region. Geomorfologiya. 2022;53(3):51-60. (In Russ.) https://doi.org/10.31857/S0435428122030129