Preview

Geomorfologiya i Paleogeografiya

Advanced search

Environment of the Oka Plateau (East Sayan Mountains) in the Late glacial and Holocene: a case study of a complex record from the Lake Khikushka sediments

https://doi.org/10.31857/S043542812203004X

Abstract

A new pollen record and biome reconstructions from the Lake Khikushka provide insights into environmental and climate changes of the so far unstudied area of the Oka Plateau in the East Sayan Mountains, south East Siberia over the last 13490 cal. yr BP. The tundra biome predominates ca. 13490–12600 cal. yr BP, closely followed by taiga and steppe suggesting cold continental climate where the permafrost layer was close to the surface. The reconstruction demonstrates significant participation of boreal trees such as Picea obovata and Larix sibirica in the vegetation at this time. Later, ca. 12600–11200 cal. yr. BP. the reconstruction suggests a reduction of the steppe and tundra biomes due to a further spread of Picea and Larix. A short interval ca. 11200–10500 cal. yr BP is marked by maximum distribution of Abies and the strengthening of the taiga biome. The interval between ca. 10500 and 6500 cal. yr. BP reveals progressive expansion of the pine-dominated taiga biome that is in line with many other pollen records from Eurasia. The taiga biome was dominant in the study area for the last 6500 cal. yr BP. Since ca. 5000 cal. yr BP the Larix stands were close to the lake. Vegetation became similar to the modern after ~5000 cal. yr BP.

About the Authors

E. V. Bezrukova
Vinogradov Institute of Geochemistry, Siberian Branch RAS
Russian Federation


N. V. Kulagina
Institute of the Earth’s Crust, Siberian Branch RAS
Russian Federation


S. A. Reshetova
Vinogradov Institute of Geochemistry, Siberian Branch RAS
Russian Federation


A. A. Shchetnikov
Institute of the Earth’s Crust, Siberian Branch RAS, Geological Institute RAS; Irkutsk State University
Russian Federation


M. A. Krainov
Vinogradov Institute of Geochemistry, Siberian Branch RAS
Russian Federation


I. A. Filinov
Institute of the Earth’s Crust, Siberian Branch RAS
Russian Federation


References

1. Asikainen C.A., Francus P., and Brigham-Grette J. Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, Northeastern Siberia. J. Paleolimnol. 2007. Vol. 37. P. 105–122. https://doi.org/10.1007/s10933-006-9026-5

2. Avnimelech Y., Ritvo G., Meijer L.E., and Kochba M. Water content, organic carbon and dry bulk density in flooded sediments. Aquacult. Eng. 2001. No. 25. P. 25–33. https://doi.org/10.1016/s0144-8609(01)00068-1

3. Berglund B.E. and Ralska-Jasiewiczowa M. Pollen analysis and pollen diagrams. B.E. Berglund (Ed.). Handbook of Holocene Palaeoecology and Palaeohydrology. New York: Wiley–Interscience (Publ.), 1986. P. 455–484.

4. Bezrukova E.V., Abzaeva A.A., Letunova P.P., Kulagina N.V., Vershinin K.E., Belov A.V., Orlova L.A., Danko L.V., and Krapivina S.V. Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as paleo-environmental indicator. Quatern. Int. 2005. Vol. 136. P. 47–57. https://doi.org/10.1016/j.quaint.2004.11.007

5. Bezrukova E.V., Tarasov P.E., Solovieva N., Krivonogov S.K., and Riedel F. Last glacial-interglacial vegetation and environmental dynamics in southern Siberia: chronology, forcing and feedbacks. Palaeogeogr. Palaeocl. 2010. Vol. 296. P. 185–198. https://doi.org/10.1016/j.palaeo.2010.07.020

6. Bezrukova E.V., Shchetnikov A.A., Kuzmin M.I., Sharova O.G., Kulagina N.V., Letunova P.P., Ivanov E.V., Kraynov M.A., Kerber E.V., Filinov I.A., and Levina O.V. First Data on the Environment and Climate Change within the ZhomBolok Volcanic Field (Eastern Sayan Mountains) in the Middle–Late Holocene. Dokl. Earth Sci. 2016. Vol. 468. P. 527–531. https://doi.org/10.1134/s1028334x16050196

7. Bezrukova E.V., Shchetnikov A.A., Kulagina N.V., and Amosova A.A. Late glacial and Holocene vegetation and environmental change in the Jom-Bolok volcanic region, East Sayan Mountains, South Siberia, Russia. Boreas. 2021. Vol. 50. No. 4. P. 935–947. https://doi.org/10.1111/bor.12518

8. Binney H., Edwards M., Macias-Fauria M., Lozhkin A., Anderson P., Kaplan J.O., Andreev A., Bezrukova E., Blyakharchuk T., Jankovska V., Khazina I., Krivonogov S., Kremenetski K., Nield J., Novenko E., Ryabogina N., Solovieva N., Willis K., and Zernitskaya V. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quaternary Sci. Rev. 2017. Vol. 157. P. 80–97. https://doi.org/10.1016/j.quascirev.2016.11.022

9. Birks H.H. and Birks H.J. B. Future uses pollen analysis must include plant macrofossils. J. Biogeogr. 2000. Vol. 27. P. 31–35. https://doi.org/10.1046/j.1365-2699.2000.00375.x

10. Blaauw M. and Christen J.A. rbacon: Age-Depth Modelling using Bayesian Statistics. R Package Version 2.3.9.1. Accessed October 29 2019. https://CRAN.R-project.org/package=rbacon Google Scholar

11. Demske D., Tarasov P.E., and Nakagawa T. Project Members, Suigetsu 2006. Atlas of pollen, spores and further non-pollen palynomorphs recorded in the glacial-in-terglacial late quaternary sediments of Lake Suigetsu, Central Japan. Quatern. Int. 2013. Vol. 290–291. P. 164–238. https://doi.org/10.1016/j.quaint.2012.02.002

12. Grimm E.C. Tilia 1.7.16 Software. Springfield IL Illinois State Museum. Research and Collection Center, 2011.

13. Huntley B. and Birks H.J.B. An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge: Cambridge University Press. (Publ.), 1983. 688 p. https://doi.org/10.1017/s0079497x00007660

14. Jarvis A., Reuter H.I., Nelson A., and Guevara E. Hole-Filled SRTM for the Globe Version 4, Available From the CGIAR-CSI SRTM 90m Database. 2008. http://srtm.csi.cgiar.org.

15. Kleinen T., Tarasov P., Brovkin V., Andreev A., and Stebich M. Comparison of modeled and reconstructed changes in forest cover through the past 8000 years: Eurasian perspective. Holocene. 2011. Vol. 21. P. 723–734. https://doi.org/10.1177/0959683610386980

16. Kobe F., Bezrukova E.V., Leipe C., Shchetnikov A.A., Goslar T., Wagner M., Kostrova S.S., and Tarasov P.E. Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology. Archaeological Research in Asia. 2020. Vol. 23. 100209. https://doi.org/10.1016/j.ara.2020.100209

17. Kostrova S.S., Meyer H., Tarasov P.E., Bezrukova E.V., Chapligin B., Kossler A., Pavlova L.A., and Kuzmin M.I. Oxygen isotope composition of diatoms from sediments of Lake Kotokel (Buryatia). Russ. Geol. Geophys (Russian Geology and Geophysics RAS). 2016. Vol. 57. No. 8. P. 1239–1247. https://doi.org/10.1016/j.rgg.2016.08.009

18. Kostrova S.S., Meyer H., Fernandoy F., Werner M., and Tarasov P.E. Moisture origin and stable isotope characteristics of precipitation in Southeast Siberia. Hydrol. Process. 2020. No. 34. P. 51–67. https://doi.org/10.1002/hyp.13571

19. Kuprianova L.A., and Alyoshina L.A. Pyl’tsa i spory rastenii flory SSSR. Tom 1: Aceraceae – Illecebraceae (Pollen and Spores of Plants from the flora of European Part of the USSR. Vol. 1: Aceraceae – Illecebraceae). Leningrad: Nauka (Publ.), 1972. 171 p. (in Russ.)

20. Kuprianova L.A. and Alyoshina L.A. Pyl’tsa dvudol’nykh rastenii flory Evropeiskoi chasti SSSR. Lamiaceae–Zygophyllaceae (Pollen Dicotyledonearum Florae arties Europaeae USSR. Leningrad: Nauka (Publ.), 1978. 83 p. (in Russ.)

21. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., and Levrard B. A long-term numerical solution for the insolation quantities of the earth. Astronom. Astrophys. 2004. Vol. 428. P. 261–285. https://doi.org/10.1051/0004-6361:20041335

22. Lozhkin A.V., Anderson P.M., Matrosova T.V., and Minyuk P.S. The pollen record from El’gygytgyn Lake: implications for vegetation and climate histories of northern Chukotka since the late middle Pleistocene. J. Paleolimnol. 2007. Vol. 37. P. 135–153. https://doi.org/10.1007/s10933-006-9018-5

23. Mackay A.W., Bezrukova E.V., Leng M.J., Meaney M., Nunes A., Piotrowska N., Self A., Shchetnikov A.A., Shilland E., Tarasov P.E., Wang L., and White D. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quaternary Sci. Rev. 2012. Vol. 41. P. 119–131. https://doi.org/10.1016/j.quascirev.2012.03.004

24. Mathis M., Sorrel P., Klotz S., Huang X., and Oberhänsli H. Regional vegetation patterns at lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia) Quaternary Sci. Rev. 2014. Vol. 89. P. 169–185. https://doi.org/10.1016/j.quascirev.2014.01.023

25. Mayewski P.A., Meeker L.D., Twickler M.S., Whitlow S., Yang Q., Lyons W.B., and Prentice M. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year long glaciochemical series. J. Geophys. Res. 1997. Vol. 102. No. 26. P. 345–366. https://doi.org/10.1029/96jc03365

26. Meeker L.D. and Mayewski P.A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene. 2002. Vol. 12. P. 257–266. https://doi.org/10.1191/0959683602hl542ft

27. Mortlock R.A. and Froelich P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research. 1989. No. 36. P. 1415–1426. https://doi.org/10.1016/0198-0149(89)90092-7

28. Pidek I.A., Svitavská-Svobodová H., Van der Knaap W.O., and Magyari E. Pollen percentage thresholds of Abies alba based on 13-year annual records of pollen deposition in modified Tauber traps: perspectives of application to fossil situations. Rev. Palaeobot. Palyno. 2013. Vol. 195. P. 26–36. https://doi.org/10.1016/j.revpalbo.2013.03.006

29. Prentice I.C., Guiot J., Huntley B., Jolly D., and Cheddadi R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dynam.1996. Vol. 12. P. 185–194. https://doi.org/10.1007/bf00211617

30. Reille M. Pollen et spores d’Europe et d’Afrique du nord, Supplement 2. Marseille: Editions du Laboratoire de botanique historique et palynology (Publ.), 1998. 530 p. https://doi.org/10.7202/004885ar

31. Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Butzin M., Cheng H., Edwards R.L., Hogg M.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson Ch., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney Ch.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S.M., FogtmannSchulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., and Talamo S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon. 2020. Vol. 62. No. 4. P. 725–757. https://doi.org/10.1017/rdc.2020.41

32. Rudaya N., Tarasov P., Dorofeyuk N., Solovieva N., Kalugin I., Andreev A., Daryin A., Diekmann B., Riedel F., Tserendash N., and Wagner M. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quaternary Sci. Rev. 2009. Vol. 28. P. 540–554. https://doi.org/10.1016/j.quascirev.2008.10.013

33. Solotchin P.A., Kuzmin M.I., Solotchina E.P., Bezrukova E.V., Strakhovenko V.D., Shchetnikov A.A., and Zhdanova A.N. New Data on Late Quaternary Sedimentation in High-Mountain Khikushka Lake (Eastern Sayan): The Role of Climatic and Volcanic Factors. Dokl. Earth Sci (Doklady Earth Sciences RAS). 2021. Vol. 501. P. 938–944. https://doi.org/10.1134/s1028334x21110155

34. Solovieva L.N. Morfologiya kriolitozony Sayano-Baikal’skoi oblasti (na primere Buryatskoi ASSR) (Morphology of the Cryolithozone of the Sayan-Baikal Region). Novosibirsk: Nauka (Publ.), 1976. 126 p. (in Russ.)

35. Stockmarr J. Tablets with spores used in absolute pollen analysis. Pollen and Spores. 1971. Vol. 13. P. 614–621.

36. Svensson A., Andersen K.K., Bigleret M., Clausen H.B., Dahl-Jensen D., Davies S.M., Johnsen S.J., Muscheler R., Parrenin F., Rasmussen S.O., Röthlisberger R., Seierstad I., Steffensen J.P., and Vinther B.M. A 60000 year Greenland stratigraphic ice core chronology. Clim. Past. 2008. Vol. 4. P. 47–57. https://doi.org/10.5194/cp-4-47-2008

37. Tarasov P., Bezrukova E., Karabanov E., Nakagawa T., Wagner M., Kulagina N., Letunova P., Abzaeva A., Granoszewski W., and Riedel F. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeocl. 2007. Vol. 252. P. 440–457. https://doi.org/10.1016/j.palaeo.2007.05.002

38. Tarasov P.E., Bezrukova E.V., and Krivonogov S.K. Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel. Clim. Past. 2009. Vol. 5. P. 285–295. https://doi.org/10.5194/cp-5-285-2009

39. Tubi A. and Dayan U. The Siberian High: teleconnections, extremes and association with the Icelandic Low. Int. J. Climatol. 2013. No. 33. P. 1357– 1366. https://doi.org/10.1002/joc.3517

40. Walker M., Johnsen S., Rasmussen S.O., Popp T., Steffensen J.-P., Gibbard P., Hoek W., Lowe J., Andrews J., Björck S., Cwynar L.C., Hughen K., Kershaw P., Kromer B., Litt T., Lowe D.J., Nakagawa T., Newnham R., and Schwander J. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quaternary Sci. 2009. Vol. 24. P. 3–17. https://doi.org/10.1002/jqs.1227

41. Xiao J., Chang Z., Fan J., Zhou L., Zhai D., Wen R., and Qin X. The link between grain-size components and depositional processes in a modern clastic lake. Sedimentology. 2012. Vol. 59. P. 1050–1062. https://doi.org/10.1111/j.1365-3091.2011.01294.x

42. Yuan D.X., Cheng H., Edwards R.L., Dykoski C.A., Kelly M.J., Zhang M.L., Qing J.M., Lin Y.S., Wang Y.J., Wu J.Y., Dorale J.A., An Z.S., and Cai Y.J. Timing, duration, and transitions of the last interglacial Asian monsoon. Science. 2004. Vol. 304. P. 575–578. https://doi.org/10.1126/science.1091220


Review

For citations:


Bezrukova E.V., Kulagina N.V., Reshetova S.A., Shchetnikov A.A., Krainov M.A., Filinov I.A. Environment of the Oka Plateau (East Sayan Mountains) in the Late glacial and Holocene: a case study of a complex record from the Lake Khikushka sediments. Geomorfologiya. 2022;53(3):61-73. (In Russ.) https://doi.org/10.31857/S043542812203004X

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)