Preview

Geomorfologiya i Paleogeografiya

Advanced search

Dendroclimatic potential of stable carbon isotopes in tree-ring cellulose of Pinus sylvestris L. in Yaroslavl and Kostroma regions; European Russia

https://doi.org/10.31857/S0435428122030099

Abstract

Stable carbon isotopes in tree rings may serve as an important proxy of past climatic and environmental changes. However, the climatic signal that is expressed in this proxy vary across regions and species. European Russia is still an understudied region, where a few studies on climatic signal in isotopic composition of wood were undertaken. Here we provide the first results of such study for living Scots pines in the city of Yaroslavl. We measured the ratio of stable carbon isotopes (δC13) in wood cellulose of individual tree rings extracted from five trees, and calculated correlation coefficients of δC13 with meteorological parameters. The period analyzed is 2010–2020. We showed that δC13 in wood cellulose has a significant relationship with May-September temperature (r = 0.63, p = 0.037), May-September precipitation (r = –0.77, p = 0.0051), and May-September Palmer Drought Severity Index (r = –0.65, p = 0.032). These results are the first direct evidence that δC13 in wood cellulose of Scots pine in Yaroslavl may serve as a proxy for the warm period moisture variations. Additional measurements are required to make conclusions about the stability of climatic signal in this proxy throughout the 20th century. We also describe two new tree-ring chronologies based on archaeological and architectural materials from the Yaroslavl (AD 1438–2019) and Kostroma (AD 1283–2012) regions. According to the obtained results on the climatic sensitivity of δC13 in wood cellulose, these chronologies may serve as a material base for annually resolved moisture reconstructions in the region.

About the Authors

V. V. Matskovsky
Institute of Geography RAS
Russian Federation


V. V. Kuznetsova
Institute of Geography RAS
Russian Federation


N. S. Semenyak
Institute of Geography RAS
Russian Federation


S. M. Turchinskaya
Institute of Geography RAS
Russian Federation


E. P. Zazovskaya
Institute of Geography RAS
Russian Federation


A. V. Engovatova
Institute of Archaeology RAS
Russian Federation


A. S. Lazarev
OGBU “Naslediye”
Russian Federation


E. Yu. Zhdanova
Institute of Geography RAS
Russian Federation


E. A. Dolgova
Institute of Geography RAS
Russian Federation


O. N. Solomina
Institute of Geography RAS; National Research University Higher School of Economics
Russian Federation


References

1. Barichivich J., Osborn T.J., Harris I., van der Schrier G., and Jones P.D. Monitoring global drought using the self-calibrating Palmer Drought Severity Index. In: “State of the Climate in 2020”. Dunn R.J.H., Aldred F., Gobron N., Miller J.B., Willett K.M. (Eds.). Bulletin of the American Meteorological Society. 2021. Vol. 102. P. 68–70. https://doi.org/10.1175/2019BAMSStateoftheCli-mate.1

2. Belmecheri S. and Lavergne A. Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia. 2020. Vol. 63. P. 125748. https://doi.org/10.1016/j.dendro.2020.125748

3. Briffa K.R. and Jones P.D. In: Methods of Dendrochronology: Applications in the Environmental Sciences, ed E.R. Cook and L.A. Kairiukstis. Dordrecht: Kluwer Academic (Publ.), 1990. P. 137–152.

4. Brugnoli E., Solomina O., Spaccino L., and Dolgova E. Climate signal in the ring width, density and carbon stable isotopes in pine (Pinus silvestris L.) in Central Caucasus. Geography, Environment, Sustainability. 2010. Vol. 3. No. 4. P. 4–16. https://doi.org/10.24057/2071-9388-2010-3-4-4-16

5. Bunce J.A. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown atthree concentrations of carbon dioxide in the field. Global Change Biology. 2000. Vol. 6. P. 371–382. https://doi.org/10.1046/j.1365-2486.2000.00314.x

6. Bunn A.G. A dendrochronology program library in R (dplR). Dendrochronologia. 2008. Vol. 26. P. 115–124. https://doi.org/10.1016/j.dendro.2008.01.002

7. Büntgen U. Scrutinizing tree-ring parameters for Holocene climate reconstructions. Wiley Interdisciplinary Reviews. 2022. Climate Change, e778. https://doi.org/10.1002/wcc.778

8. Büntgen U., Urban O., Krusic P.J., Rybníček M., Kolář T., Kyncl T., Ač A., Koňasová E., Čáslavský J., Esper J., Wagner S., Saurer M., Tegel W., Dobrovolný P., Cherubin P., Reinig F., and Trnka M. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021. Vol. 14. P. 190–196. https://doi.org/10.1038/s41561-021-00698-0

9. CooRecorder basics – Cybis Dendrochronology [Electronic data] http://www.cybis.se/forfun/dendro/ (access date: 23.04.2022)

10. Dolgova E. June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia. 2016. Vol. 39. P. 17–23. https://doi.org/10.1016/j.dendro.2016.03.002

11. Engovatova A.V., Lazarev A.S., and Matskovsky V.V. Novye arkheologicheskie nakhodki dlya dendrokhronologicheskoi shkaly po khvoynym porodam dlya Yaroslavskoi i Kostromskoi oblasti. (New archaeological finds for conifer tree-ring width chronologies of the Yaroslavl and Kostroma regions.) In: The Archeology of the Moscow region. Moscow: Istitute of Archaeology RAS (Publ.), 2022. Vol. 18. P. 91–106. (in Russ.)

12. Esper J., Holzkämper S., Büntgen U., Schöne B., Keppler F., Hartl C., George S.S., Riechelmann D.F.C., and Treydte K. Site-specificclimatic signals in stable isotope records from Swedish pine forests. Trees. 2018. Vol. 32. P. 855–86. https://doi.org/10.1007/s00468-018-1678-z

13. Esper J., Krusic P.J., Ljungqvist F.C., Luterbacher J., Carrer M., Cook E., Davi N.K., Hartl-Meier C., Kirdyanov A., Konter O., Myglan V., Timonen M., Treydte K., Trouet V., Villalba R., Yang B., and Büntgen U. Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews. 2016. Vol. 145. P. 134–151. https://doi.org/10.1016/j.quascirev.2016.05.009

14. Farquhar G.D., Ehleringer J.R., and Hubick K.T. Carbon isotope discrimination and photosynthesis. Annual review of plant biology. 1989. Vol. 40. P. 503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443

15. Fredeen A.L. and Sage R.F. Temperature and humidity effects on branchlet gas-exchange in white spruce: an explanation for the increase in transpiration with branchlet temperature. Trees. 1999. Vol. 14. P. 161–168. https://doi.org/10.1007/s004680050220

16. Gagen M., McCarroll D., and Edouard J.L. Latewood width, maximum density and stable carbon isotope ratios of pine as climate indicagtors in a dry subalpine environment, French Alps. 2004. Arctic, Antarctic, and Alpine Research. Vol. 36. P. 166–171. https://doi.org/10.1657/1523-0430(2004)036[0166:LWMDAS]2.0.CO;2

17. Gagen M., McCarroll D., Loader N.J., Robertson I., Jalkanen R., and Anchukaitis K.J. Exorcising the segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene. 2007. Vol. 17. P. 435–446. https://doi.org/10.1177/0959683607077012

18. Gagen M., Zorita E., McCarroll D., Young H.F., Grudd H., Jalkanen R., Loader N.J., Robertson I., and Kirchhefer A. Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters. 2011. Vol. 38(5). L05701. https://doi.org/10.1029/2010GL046216

19. Grissino-Mayer H. Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program COFECHA. Tree-ring Res. 2001. Vol. 57. No. 2. P. 205–221.

20. Hartl-Meier C., Zang C., Büntgen U., Esper J., Rothe A., Göttlein A., Dirnböck T., and Treydte K. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiology. 2014. Vol. 35. P. 4–15. https://doi.org/10.1093/treephys/tpu096

21. Helama S., Stoffel M., Hall R.J., Jones P.D., Arppe L., Matskovsky V.V., Timonen M., Nojd P., Mielikainen K., and Oinonen M. Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene. Climate dynamics. 2021. Vol. 56. No. 11. P. 3817–3833. https://doi.org/10.1007/s00382-021-05669-0

22. Hughes M.K., Olchev A., Bunn A.G., Berner L.T., Losleben M., and Novenko E. Different climate responses of spruce and pine growth in Northern European Russia. Dendrochronologia. 2019. 56. 125601. https://doi.org/10.1016/j.dendro.2019.05.005

23. Jiang S., Zhang T., Yuan Y., Yu S., Shang H., and Zhang R. Drought reconstruction based on tree-ring earlywood of Picea obovata Ledeb. for the southern Altay Mountains. Geografiska Annaler: Series A, Physical Geography. 2020. 102(3). 267–286. https://doi.org/10.1080/04353676.2020.1773060

24. Kang S., Loader N. J., Wang J., Qin C., Liu J., and Song M. Tree-Ring Stable Carbon Isotope as a Proxy for Hydroclimate Variations in Semi-Arid Regions of North-Central China. Forests. 2022. Vol. 13(4). P. 492. https://doi.org/10.3390/f13040492

25. Karpukhin A.A. and Matskovsky V.V. Absolyutnaya generalizirovannaya dendrokhronologicheskaya shkala basseinov rek Sheksna i Sukhona (1085–2009). (Absolute generalized dendrochronological scale of the Sheksna and Sukhona river basins (1085–2009)). Russ. Archaeol. 2014. Vol. 2. P. 76–87. (in Russ.)

26. Keeling C.D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 1979. Vol. 2. P. 229–300. https://doi.org/10.1016/0160-4120(79)90005-9

27. Kress A., Saurer M., Siegwolf R.T.W., Frank, D.C., Esper J., and Bugmann H. A 350-year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochemical Cycles. 2010. 24, GB2011. https://doi.org/10.1029/2009GB003613

28. Kuznetsova V.V. and Solomina O.N. Contrasting climate signals across a Scots pine (Pinus sylvestris L.) tree-ring network in the Middle Volga (European Russia). Dendrochronologia. 2022. 125957. https://doi.org/10.1016/j.dendro.2022.125957

29. Larsson L-Å. CDendro & CooRecorder Program Package for Tree Ring Measurements and Crossdating of the Data, Version 8.1.1. 2016. http://www.cybis.se/forfun/dendro (access date: 23.04.2022)

30. Loader N.J., Young G.H.F., Grudd H., and McCarroll D. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quaternary Science Review. 2013. Vol. 62. P. 97–113. https://doi.org/10.1016/j.quascirev.2012.11.014

31. Liu Y., Ta W., Li Q., Song H., Sun C., Cai Q., and Li W. Tree-ring stable carbon isotope-based April–June relative humidity reconstruction since ad 1648 in Mt. Tianmu, China. Climate dynamics. 2018. Vol. 50(5). P. 1733–1745. https://doi.org/10.1007/s00382-017-3718-6

32. Lukač L., Mikac S., Urban O., Kolář T., Rybníček M., Ač A., and Marek M. V. Stable Isotopes in Tree Rings of Pinus heldreichii Can Indicate Climate Variability over the Eastern Mediterranean Region. Forests. 2021.12(3). P. 350. https://doi.org/10.3390/f12030350

33. Matskovsky V.V. Climate signal in the width of annual rings of conifers in northern and central European Russia. Moscow: GEOS (Publ.), 2012. 148 p.

34. Matskovsky V. Climatic signal in tree-ring width chronologies of conifers in European Russia. International journal of climatology. 2016. Vol. 36(9). P. 3398–3406. https://doi.org/10.1002/joc.4563

35. McCarroll D., Gagen M.H., Loader N.J., Robertson I., Anchukaitis K.J., Los S., Young G.H.F., Jalkanen R., Kirchhefer A.J., and Waterhouse J.S. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim. Cosmochim. Acta. 2009. Vol. 73. P. 1539–1547. https://doi.org/10.1016/j.gca.2008.11.041

36. McCarroll D. and Pawellek F. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene. 2001. Vol. 11. No. 5. P. 517–526. https://doi.org/10.1191/095968301680223477

37. Nikolov N.T., Massman W.J., and Schoettle A.W. Coupling bio-chemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C-3 plants. Ecological Modelling. 1995. Vol. 80. P. 205–235.

38. Panyushkina I.P., Karpukhin A.A., and Engovatova A.V. Moisture record of the Upper Volga catchment between AD 1430 and 1600 supported by a δ13C tree-ring chronology of archaeological pine timbers. Dendrochronologia. 2016. Vol. 39. P. 24–31. https://doi.org/10.1016/j.dendro.2016.02.002

39. Pogoda i klimat [Electronic data] http://www.pogodaiklimat.ru/history/27330.htm (access date: 09.02.2022)

40. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/ (access date: 23.04.2022)

41. Robertson I. and Woodborne S.W. Carbon Isotopes Confirm the Competitive advantages of Prosopis over Acacia Erioloba. In Study of Environmental Change Using Isotope Techniques, IAEA-CSP-13/P. International Atomic Energy Agency. Vienna. 2002. P. 433–434.

42. Sidorova O.V., Siegwolf R.T.W., Myglan V.S., Ovchinnikov D.V., Shishov V.V., Helle G., Loader N.J., and Saurer M. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai. Climatic Change. 2013. Vol. 120 (1). P. 153–167. https://doi.org/10.1007/s10584-013-0805-5

43. Solomina O.N., Bushueva I.S., Dolgova E.A., Zolotokrylin A.N., Kuznettsova V.V., Kuznetsova T.O., and Tchernokulsky A.V. Zasukhi Vostochno-Evropeiskoi ravniny po gidrometeorologicheskim i dendrokhronologicheskim dannym (Droughts of the East European Plain according to hydrometeorological and tree-ring data). St. Petersburg: Nestor Istoriya (Publ.), 2017. 360 p. (In Russ.)

44. Stokes M.A. and Smiley T.L. An Introduction to Tree-Ring Dating Chicago: University of Chicago Press (Publ.), 1968. 95 p.

45. Voelker S.L., Merschel A.G., Meinzer F.C., Ulrich D.E., Spies T.A., and Still C.J. Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and tree-ring carbon isotope evidence from Central Oregon. Global Change Biology. 2019. Vol. 25(4). P.1247–1262. https://doi.org/10.1111/gcb.14543

46. Waterhouse J.S., Barker A.C., Carter A.H.C., Agafonov L.I., and Loader N.J. Stable carbon isotopes in Scots pine tree rings preserve a record of flow of the river Ob. Geophysical Research Letters. 2000. Vol. 27. P. 3529–3532. https://doi.org/10.1029/2000GL006106

47. Warren C.R., McGrath J.F., and Adams M.A. Water availability and carbon isotope discrimination in conifers. Oecologia. 2001. 127. P. 476–486. https://doi.org/10.1007/s004420000609

48. Wigley T.M., Briffa K.R., and Jones P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology. 1984. Vol. 23. No. 2. P. 201–213.


Review

For citations:


Matskovsky V.V., Kuznetsova V.V., Semenyak N.S., Turchinskaya S.M., Zazovskaya E.P., Engovatova A.V., Lazarev A.S., Zhdanova E.Yu., Dolgova E.A., Solomina O.N. Dendroclimatic potential of stable carbon isotopes in tree-ring cellulose of Pinus sylvestris L. in Yaroslavl and Kostroma regions; European Russia. Geomorfologiya. 2022;53(3):74-82. (In Russ.) https://doi.org/10.31857/S0435428122030099

Views: 210


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)