Variability in the structure and composition of the Upper Quaternary loess of Ciscaucasia (south of the European part of Russia)
https://doi.org/10.31857/S0435428122030075
Abstract
The problem of the source of mineral dust, which makes up the loess-paleosol sequence of Ciscaucasia, remains relevant. One of the main approaches to solving the problem is the spatial analysis of the structure and composition of the loess. Based on the core analysis of three boreholes, a sublatitudinal cross-section of the loess-paleosol sequence of the Upper Pleistocene and Holocene was constructed. A gradual decrease in the thickness of loess-paleosol sequence and grain size from east to west was found out. The total thickness of the Upper Pleistocene and Holocene deposits in the OT-20 section (eastern part) is 22.6 m, SB-1 (central part) – 9.7 m, YS-1 (western part) – 5.3 m. The average content of the sand fraction decreases in the same direction: OT-20 – 17.1%, SB-1 – 6.1%, YS-1 – 1.9%. The results indicate that the main direction of the aeolian transport during the Late Pleistocene and Holocene was from east to west. Sand deserts of the Caspian low-land are probably the main source of the material. Secondary sources of mineral dust are local sandy massifs spread on the terraces of large rivers like Don and Kuban. Compositional variations of loess in depth show that the intensity of eolian processes was higher during cold periods and lower during warm ones. The loess sequences in the east of Ciscaucasia have higher temporal resolution and more responsive paleoclimatic indicators than the western ones.
Keywords
About the Authors
E. A. KonstantinovRussian Federation
E. A. Mazneva
Russian Federation
N. V. Sychev
Russian Federation
A. L. Zakharov
Russian Federation
K. G. Filippova
Russian Federation
References
1. Balaev L.G. and Tsarev P.V. Lessovidnye porody Tsentral’nogo i Vostochnogo Predkavkaz’ya (Loess deposits of Central and Eastern Ciscaucasia). M.: Nauka (Publ.), 1964. 246 p. (in Russ.)
2. Bengtsson L. and Enell M. Chemical analysis. In: Handbook of Holocene Palaeoecology and Palaeohydrology. Berglund B.E. (Ed.). Chichester: John Wiley & Sons Ltd, 1986. P. 423–451.
3. Bettis III E.A., Muhs D.R., Roberts H.M., and Wintle A.G. Last Glacial loess in the conterminous USA. Quaternary Science Reviews. 2003. Vol. 22. P. 1907–1946. https://doi.org/10.1016/S0277-3791(03)00169-0
4. Chen J., Yang T., Matishov G.G., Velichko A.A., Zeng B., He Y., Shi P., Fan Z., Titov V.V., Borisova O.K., Timireva S.N., Konstantinov E.A., Kononov Y.M., Kurbanov R.N., Panin P.G., and Chubarov I.G. A luminescence dating study of loess deposits from the Beglitsa section in the Sea of Azov, Russia. Quaternary International. 2018a. Vol. 478. P. 27–37. https://doi.org/10.1016/j.quaint.2017.11.017
5. Chen J., Yang T., Matishov G.G., Velichko A.A., Zeng B., He Y., and Shi P. Luminescence chronology and age model application for the upper part of the ChumburKosa loess sequence in the Sea of Azov, Russia. Journal of Mountain Science. 2018b. Vol. 15. P. 504–518. https://doi.org/10.1007/s11629-017-4689-0
6. Chen J., Yang T., Qiang M., Matishov G.G., Velichko A.A., Zeng B., and Shi P. Interpretation of sedimentary subpopulations extracted from grain size distributions in loess deposits at the Sea of Azov, Russia. Aeolian Research. 2020. Vol. 45. 100597. https://doi.org/10.1016/j.aeolia.2020.100597
7. Chen J., Stevens T., Yang T., Qiang M., Matishov G., Konstantinov E., Kurbanov R., Zeng B., and Shi P. Revisiting Late Pleistocene Loess–Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Frontiers in Earth Sciences. 2022. Vol. 9. 808157. https://doi.org/10.3389/feart.2021.808157
8. Fedorovich B.A. Voprosy proiskhozhdeniya lessa v svyazi s usloviyami ego rasprostraneniya v Evrazii (Questions about the loess deposits origin in connection with the conditions of its distribution in Eurasia). Trudy Instituta Geografii AN SSSR. 1960. Vol. 80. P. 96–117. (in Russ.)
9. Heiri O., Lotter A.F., and Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology. 2001. Vol. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481
10. Költringer C., Bradák B., Stevens T., Almqvist B., Banak A., Lindner M., and Snowball I. Palaeoenvironmental implications from Lower Volga loess – Joint magnetic fabric and multi-proxy analyses. Quaternary Science Reviews. 2021. Vol. 267. 107057. https://doi.org/10.1016/j.quascirev.2021.107057
11. Költringer C., Stevens T., Lindner M., Baykal Y., Ghafarpour A., Khormali F., and Kurbanov R. Quaternary sediment sources and loess transport pathways in the Black Sea-Caspian Sea region identified by detrital zircon U-Pb geochronology. Global and Planetary Change. 2022. 103736. https://doi.org/10.1016/j.gloplacha.2022.103736
12. Konstantinov E.A., Velichko A.A., Kurbanov R.N., and Zakharov A.L. Middle to Late Pleistocene topography evolution of the North-Eastern Azov region. Quaternary International. 2018. Vol. 465. P. 72–84. https://doi.org/10.1016/j.quaint.2016.04.014
13. Lessovyi pokrov Zemli i ego svoistva (Loess cover of the Earth and its properties). V.T. Trophimov (Ed.). M.: MSU (Publ.), 2001. 464 p. (in Russ.)
14. Lewis G.C., Fosberg M.A., McDole R.E., and Chugg J.C. Distribution and some properties of loess in south-central and south-eastern Idaho. Soil Science Society of America Proceedings. 1975. Vol. 39. P. 1165–1168. https://doi.org/10.1016/S0277-3791(03)00169-0
15. Liu D.S. Loess and Environment. Beijing: Science Press (Publ.), 1985. P. 228–250.
16. Maher B.A. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. Vol. 137. No. 1–2. P. 25–54. https://doi.org/10.1016/S0031-0182(97)00103-X
17. Mason J.A. Transport direction of Peoria loess in Nebraska and implications for loess sources on the central Great Plains. Quaternary Research. 2001. Vol. 56. P. 79–86. https://doi.org/10.1006/qres.2001.2250
18. Mazneva E., Konstantinov E., Zakharov A., Sychev N., Tkach N., Kurbanov R., Sedaeva K., and Murray A. Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition. Quaternary International. 2021. Vol. 590. P. 146–163. https://doi.org/10.1016/j.quaint.2020.11.039
19. Muhs D.R., Ager T.A., Bettis III E.A., McGeehin J., Been J.M., Beget J.E., Pavich M.J., Stafford Jr. T.W., and Stevens D.A.S.P. Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial – Glacial cycle in central Alaska. Quaternary Science Reviews. 2003. Vol. 22. No. 18–19. P. 1947–1986. https://doi.org/10.1016/S0277-3791(03)00167-7
20. Murray A.S. and Wintle A.G. Luminescence dating of quartz using an improved single-aliquot regenerativedose protocol. Radiation Measurements. 2000. Vol. 32. No. 1. P. 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X
21. Murray A.S. and Wintle A.G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements. 2003. Vol. 37. P. 377–381. https://doi.org/10.1016/S1350-4487(03)00053-2
22. Ozer M., Orhan M., and Isik N.S. Effect of particle optical properties on size distribution of soils obtained by laser diffraction. Environmental & Engineering Geoscience. 2010. Vol. 16. No. 2. P. 163–173. https://doi.org/10.2113/gseegeosci.16.2.163
23. Porter C. Chinese loess record of monsoon climate during the last glacial-interglacial cycle. Earth–Science Reviews. 2001. Vol. 54. No. 1–3. P. 115–128. https://doi.org/10.1016/S0012-8252(01)00043-5
24. Rousseau D.-D., Chauvel C., Sima A., Hatté C., Lagroix F., Antoine P., Balkanski Y., Fuchs M., Mellett C., Kageyama M., Ramstein G., and Lang A. European glacial dust deposits: Geochemical constraints on atmospheric dust cycle modeling. Geophysical Research Letters. 2014. Vol. 41. No. 21. P. 7666–7674. https://doi.org/10.1002/2014GL061382
25. Rozycki S.Z. Loess and Loess-Like Deposits. Wroclaw: Ossolineum-Polish Academy of Sciences. 1991. 187 p.
26. Sazhin A.N., Vasiliev Yu.I., Chichagov V.P., and Larionov G.A. Eolovyi morfogenez i sovremennyi klimat Evrazii (Katastroficheskie eolovye protsessy, dinamicheskie razlichiya eolovykh protsessov sovremennoy i lednikovykh epokh) (Aeolian morphogenesis and modern climate of Eurasia (Catastrophic aeolian processes, dynamic differences between aeolian processes of the modern era and ice ages)). Geomorphologiya. 2013. Vol. 2. P. 2–15. (in Russ.).
27. https://doi.org/10.15356/0435-4281-2013-2-3-14.
28. Sazhin A.N., Vasiliev Yu.I., Chichagov V.P., and Larionov G.A. Sovremennyi klimat Evrazii (Dinamika atmosfery, blokiruushchie i eolovye protsessy) (Modern climate of Eurasia (Atmospheric dynamics, blocking and eolian processes)). Geomorphologiya. 2012. Vol. 3. P. 10–20. (in Russ.). https://doi.org/10.15356/0435-4281-2012-3-10-20.
29. Smith G.D. Illinois loess – Variations in its properties and distribution. University of Illinois Agricultural Experiment Station Bulletin. 1942. Vol. 490. P. 139–184.
30. Sprafke T., Schulte P., Meyer-Heintze S., Händel M., Einwögerer T., Simon U., and Terhorst B. Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quaternary Science Reviews. 2020. Vol. 248. 106602. https://doi.org/10.1016/j.quascirev.2020.106602
31. Thiel C., Buylaert J.-P., Murray A., Terhorst B., Hofer I., Tsukamoto S., and Frechen M. Luminescence dating of the stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International. 2011. Vol. 234. P. 23–31. https://doi.org/10.1016/j.quaint.2010.05.018
32. Velichko A., Morozova T.D., Borisova O.K., Timireva S.N., Semenov V.V., Kononov Yu.M., and Kurbanov R.N. Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region. Doklady Earth Sciences. 2012. Vol. 445. P. 999–1002. https://doi.org/10.1134/S1028334X12080107
33. Velichko A.A., Faustova M.A., Pisareva V.V., Gribchenko Y.N., Sudakova N.G., and Lavrentiev N.V.
34. Glaciations of the East European Plain. In: Glaciations of the East European Plain: Distribution and Chronology, Developments in Quaternary Sciences. Amsterdam: Elsevier, 2011. P. 337–359.
35. Velichko A.A. and Morozova T.D. The main features of soil formation in the Pleistocene on the East European Plain and its paleogeographic interpretation. In: Evolution of soils and soil cover. Theory, diversity of natural evolution and anthropogenic soil transformations. V.N. Kudeyarov, I.V. Ivanov (Eds.). M.: GEOS (Publ.), 2015. P. 321–337. (in Russ.)
36. Velichko A.A., Yang T., Alekseev A.O., Borisova O.K., Kalinin P.I., Konishchev V.N., Kononov Yu.M., Konstantinov E.A., Kurbanov R.N., Panin P.G., Rogov V.V., Sarana V.A., Timireva S.N., and Chubarov I.G. Sravnitelnyi analiz izmenenii uslovii osadkonakopleniya za poslednii mezhlednikovo-lednikovyi makrotsikl v lessovykh oblastyakh yuga Vostochno-Evropeiskoi ravniny (Priazovie) i tsentral’nogo Kitaya (Lessovoe plato) (Comparative analysis of changes in sedimentation conditions for the last interglacial-glacial macrocycle in the loess areas of the south of the East European Plain (Azov region) and central China (Loess Plateau)). Geomorphologiya. 2017. Vol. 1. P. 3–18. (in Russ.). https://doi.org/10.15356/0435-4281-2017-1-3-18.
37. Yanina T.A. The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene. Quaternary International. 2014. Vol. 345. P. 88–99. https://doi.org/10.1016/j.quaint.2014.01.045
Review
For citations:
Konstantinov E.A., Mazneva E.A., Sychev N.V., Zakharov A.L., Filippova K.G. Variability in the structure and composition of the Upper Quaternary loess of Ciscaucasia (south of the European part of Russia). Geomorfologiya. 2022;53(3):107-116. (In Russ.) https://doi.org/10.31857/S0435428122030075