The structure of the Moksha River floodplain as a key to the Late Pleistocene history of the valley development
https://doi.org/10.31857/S0435428122050108
Abstract
The noticeable geomorphic feature of the Moksha River valley (middle Oka River basin) is the occurrence of numerous large palaeomeanders that evidence a several fold rise of river discharges. To establish the history of valley development, the key study in the lower part of the Moksha River valley was organized between the mouth of the Tsna River and the mouth of the Moksha River. Based on the results of mechanical coring, geomorphological and lithological analysis, and radiocarbon AMS-dating we reconstructed the following main stages of the Moksha River valley development in the end of the Late Pleistocene. 1) About 40–30 ka ago the increase of the river runoff associated with climatic changes led to the river incision deeper than the present level. 2) After that the drying up of the climate and a lowering of the river runoff led to the filling of the valley (the strongest drying was in LGM time, about 23–20 ka ago). 3) Between 18.5–12 ka ago the river runoff increased and caused macromeanders formation and widening of the valley bottom. 4) In the Holocene runoff decreased again and the channel parameters became close to the modern ones.
About the Authors
E. Yu. MatlakhovaRussian Federation
V. Yu. Ukraintsev
Russian Federation
References
1. Dashevskij V.V. and Sychkin N.I. (Eds.) Geologicheskaya karta dochetvertichnykh otlozhenii Ryazanskoi oblasti. Masshtab 1:500 000 (Geological map of pre-Quaternary deposits of the Ryazan region. Scale 1:500 000). Moscow: Ministerstvo prirodnykh resursov Rossiiskoi federacii (Publ.), 1998. 6 p. (in Russ.)
2. Dury G.H. General theory of meandering valleys. U.S. Geological Survey professional paper. 1964. Vol. 452-A. 67 p.
3. Golosov V. and Panin A. Century-scale stream network dynamics in the Russian Plain in response to climate and land use change. Catena. 2006. Vol 66 (1–2). P. 74–92. https://doi.org/10.1016/j.catena.2005.07.011
4. Matlahova E.Yu. and Panin A.V. The role of aeolian processes in the development of the river valleys in the central of the East European Plain in the Late Valdai. Geomorfologicheskie resursy i geomorfologicheskaya bezopasnost': ot teorii k praktike. Sbornik materialov Vserossiiskoi konferentsii “VII Shchukinskie chteniya”. Moscow: MAKS Press (Publ.), 2015. P. 459–462. (in Russ.)
5. Matlakhova E.Yu., Panin A.V., Belyaev V.R., and Borisova O.K. Razvitie doliny Verkhnego Dona v kontse pozdnego pleistotsena (The Upper Don River valley evolution in the end of the Late Pleistocene). Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya. 2019. No. 3. P. 83–92. (in Russ.)
6. Panin A., Adamiec G., Buylaert J.-P., Matlakhova E., Moska P., and Novenko E. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quaternary Science Reviews. 2017. Vol. 166. P. 266–288. https://doi.org/10.1016/j.quascirev.2016.12.002
7. Panin A.V., Adamiec G., Arslanov K.A., Bronnikova M.A., Filippov V.V., Sheremetskaya E.D., Zaretskaya N.E., and Zazovskaya E.P. Absolute chronology of fluvial events in the Upper Dnieper river system and its palaeogeographic implications. Geochronometria. 2014. No. 41 (3). P. 278–293. https://doi.org/10.2478/s13386-013-0154-1
8. Panin A.V., Sidorchuk A.Yu., and Chernov A.V. Osnovnye etapy formirovaniya poim ravninnykh rek Severnoi Evrazii (The Main Stages of the floodplains’ formation in the plain river valleys of the Northern Eurasia). Geomorfologiya. 2011. No. 3. P. 20–31. (in Russ.). https://doi.org/10.15356/0435-4281-2011-3-20-31
9. Panin A.V., Sidorchuk A.Yu., and Vlasov M.V. Moshchnyi pozdnevaldaiskii rechnoi stok v basseine Dona (Great Late Glacial runoff in Don river basin). Izvestiya RAN. Seriya geograficheskaya. 2013. No. 1. P. 118–129. (in Russ.). https://doi.org/10.15356/0373-2444-2013-1-118-129
10. Panin A.V., Sidorchuk A.Yu., Baslerov S.V., Borisova O.K., Kovaliyuh N.N., and Sheremetskaya E.D. Osnovnye etapy istorii rechnykh dolin tsentra Russkoi ravniny v pozdnem valdae i golocene: rezul’taty issledovanii v srednem techenii r. Seim (Main events in the histroy of river valleys in the central Russian Plain in the Late Weichselian and Holocene: the middle Sejm River case study). Geomorfologiya. 2001. No. 2. P. 19–34 (in Russ.)
11. Ramsey C.B. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009. No. 51 (1). P. 337–360. https://doi.org/10.1017/S0033822200033865
12. Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S.M., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., and Talamo S. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. 2020. No. 62 (4). P. 725–757. https://doi.org/10.1017/RDC.2020.41
13. Sidorchuk A., Panin A., and Borisova O. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum–Late Glacial time. Geological Society of America Special Paper. 2011. Vol. 473. P. 1–25. https://doi.org/10.1130/2011.2473(01)
14. Sidorchuk A.Yu., Panin A.V., and Borisova O.K. Climateinduced changes in surface runoff on the North-Eurasian plains during the Late Glacial and Holocene. Water Resources. 2008. Vol. 35. No. 4. P. 386–396. https://doi.org/10.1134/S0097807808040027
15. Sidorchuk A.Yu., Borisova O.K., and Panin A.V. Pozdnevaldaiskie paleorusla rek Russkoi ravniny (Large palaeochannels of Late Weichselian age in the Russian Plain). Izvestiya RAN. Seriya geograficheskaya. 2000. No. 6. P. 73–78 (in Russ.).
16. Sidorchuk A.Yu., Panin A.V., and Borisova O.K. River Runoff Decrease in North Eurasian Plains during the Holocene Optimum. Water Resources. 2012. Vol. 39. No. 1. P. 69–81. https://doi.org/10.1134/S0097807812010113
17. Starkel L. The place of the Vistula river valley in the late Vistulian – early Holocene evolu-tion of the European valleys. Palaeoclimate Research. 1995. Vol. 14. P. 75–88.
18. Vandenberghe J. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International. Vol. 91. No. 1. 2002. P. 17–23. https://doi.org/10.1016/S1040-6182(01)00098-2
19. Vandenberghe J. and Sidorchuk A. Large Palaeomeanders in Europe: Distribution, Formation Process, Age, Environments and Significance. Palaeohydrology. Geography of the Physical En-vironment. Springer Cham. 2020. P. 169–186. https://doi.org/10.1007/978-3-030-23315-0_9
Review
For citations:
Matlakhova E.Yu., Ukraintsev V.Yu. The structure of the Moksha River floodplain as a key to the Late Pleistocene history of the valley development. Geomorfologiya. 2022;53(5):127-133. https://doi.org/10.31857/S0435428122050108