Preview

Geomorfologiya i Paleogeografiya

Advanced search

Upper Volga’s incision valleys: geomorphological aspects and development history

https://doi.org/10.31857/S0435428122050182

Abstract

The evolution of the upstream part of the Volga River, the Upper Volga, is still uncertain. According to the most popular model, the river emerged after the MIS 2 proglacial lakes, supposedly formed in its basin, were drained 14.5 ka after the Plyos and Tutayev incision valleys formation. To test this hypothesis, we aimed to determine the mechanism of formation and age of the incision valleys using luminescence dating. Also, we used a GIA model to assess one of the possible ways of proglacial lakes formation. We found that the terrace located in the Plyos incision valley dates back to late MIS 6 – MIS 5, proving that the valley is much older than the proposed MIS 2 age. Since no evidence of limnic sediments were found in the valley and the modelling did not show a significant GIA influence on the basin that could lead to the proglacial lake formation, we can assume that the valley was not occupied by lake water in MIS 2. Apparently, previous researchers mistook various loams and silts, widely developed on the slopes and in the bottom of the valley, for MIS 2 lake sediments. According to our dating data, these sediments do date back to MIS 2, but are rather of slope and aeolian origin. Following our GIA modelling results, during MIS 2 the Upper Volga valley was affected by a glacial forebulge formation. Its height was not enough to dam up the Volga, but the forebulge relaxation process caused the valley slope to gradually decrease. Due to that accumulation followed, confirmed by the presence of a river terrace of an appropriate age. During late MIS 2, disappearance of the forebulge led the river to incise. 

About the Authors

A. O. Utkina
Institute of Geography Russian Academy of Sciences, Moscow
Russian Federation


A. V. Panin
Institute of Geography Russian Academy of Sciences, Moscow
Russian Federation


References

1. Alexanderson H. and Murray A.S. Problems and potential of OSL dating Weichselian and Holocene sediments in Sweden. Quaternary Science Reviews. 2012. Vol. 44. P. 37–50. https://doi.org/10.1016/j.quascirev.2009.09.020

2. Argus D.F., Peltier W.R., Drummond R., and Moore A.W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophysical Journal International. 2014. Vol. 198. No. 1. P. 537–563. https://doi.org/10.1093/gji/ggu140

3. Arslanov H.A., Gromova L.I., Polevaya N.I., and Rudnev Yu.P. Data of the radiocarbon laboratory of the All-Union Scientific Research Geological Institute VSEGEI. BKICHP. 1972. Vol. 38. P. 50–72. (in Russ.)

4. Astakhov V., Shkatova V., Zastrozhnov A., and Chuyko M. Glaciomorphological Map of the Russian Federation. Quaternary International. 2016. Vol. 420. P. 4–14. https://doi.org/10.1016/j.quaint.2015.09.024

5. Bolshakova P.A. Geological structure and hydrogeological conditions of the territory of the sheet O-37-XXIV: Raslovskaya GGP report on the complex geological and hydrogeological survey conducted in 1960–63. Moscow: Russian Geologic Survey, 1963 (unpublished data). (in Russ.)

6. Buylaert J.P., Jain M., Murray A.S., Thomsen K.J., Thiel C., and Sohbati R. Arobust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas. 2012. Vol. 41. P. 435–451. https://doi.org/10.1111/j.1502-3885.2012.00248.x

7. Bylinsky E.N. Glacial isostatic uplifts of the lithosphere and their possible impact on the location of oil and gas deposits in the north of Europe. Geomorfologiya. 1990. No. 4. P. 3–13. (in Russ.)

8. Hansen V., Murray A., Buylaert J.-P., Yeo E.-Y., and Thomsen K. A new irradiated quartz for beta source calibration. Radiation Measurements. 2015. Vol. 81. P. 123–127. https://doi.org/10.1016/j.radmeas.2015.02.017

9. Hansen V., Murray A., Thomsen K., Jain M., Autzen M., and Buylaert J.-P. Towards the origins of overdispersion in beta source calibration. Radiation Measurements. 2018. Vol. 120. P. 157–162. https://doi.org/10.1016/j.radmeas.2018.05.014

10. Kalm V. Ice-flow pattern and extent of the last Scandinavian Ice Sheet southeast of the Baltic Sea. Quaternary Science Reviews. 2012. Vol. 44. P. 51–59. https://doi.org/10.1016/j.quascirev.2010.01.019

11. Kurbanov R., Murray A., Thompson W., Svistunov M., Taratunina N., and Yanina T. First reliable chronology for the early khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas. 2020. Vol. 50. No. 1. P. 134–146. https://doi.org/10.1111/bor.12478. ISSN 0300-9483

12. Kvasov D.D. The Late Quaternary history of large lakes and inland seas of Eastern Europe. Helsinki: Suomalainen tiedeakad, 1979. 71 p.

13. Mangerud J., Jakobsson M., Alexanderson H., Astakhov V., Clarke G.K.C., Henriksen M., Hjort C., Krinner G., Lunkka J.-P., Möller P., Murray A., Nikolskaya O., Saarnisto M., and Svendsen J.I. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews. 2004. Vol. 23 (11–13). P. 1313–1332. https://doi.org/10.1016/j.quascirev.2003.12.009

14. Mirchink G.F. Quaternary history of the Volga River valley above the Mologa. Trudy komissii po izucheniu chetvertichnogo perioda AN USSR. 1935. Vol. 4. P. 5–37. (in Russ.)

15. Moskvitin A.I. Pleistocene stratigraphy in the European part of the USSR. Trudy GIN AN SSSR. 1967. Vol. 156. 236 p. (in Russ.) Murray A.S. and Wintle A.G. Luminescence dating of quartz using an improved single-aliquot regenerativedose protocol. Radiation Measurements. 2000. Vol. 32 (1). P. 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X

16. Murray A.S., and Wintle A.G.. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements. 2003. Vol. 37 (4–5). P. 377–381. https://doi.org/10.1016/S1350-4487(03)00053-2

17. Murray A.S., Arnold L.J., Buylaert J.-P., Guérin G., Qin J., Singhvi A.K., Smedley R., and Thomsen K.J. Optically stimulated luminescence dating using quartz. Nature Review Methods Primers. 2021. No. 1. 31 p. https://doi.org/10.1038/s43586-021-00068-5

18. Murray A.S., Marten R., Johnston A., and Martin P. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry. 1987. Vol. 115. P. 263–288. https://doi.org/10.1007/BF02037443

19. Murray A.S., Thomsen K.J., Masuda N., Buylaert J.-P., and Jain M. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements. 2012. Vol. 47 (9). P. 688–695. https://doi.org/10.1016/j.radmeas.2012.05.006

20. Obedientova G.V. Erozionnye tsikly i formirovanie doliny Volgi (Erosion Cycles and Formation of the Volga River Valley). Moscow: Nauka (Publ.), 1977. 240 p. (in Russ.)

21. Olley J., Murray A., and Roberts R. The effects of disequilibria in uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews. 1996. Vol. 15 (7). P. 751–760. https://doi.org/10.1016/0277-3791(96)00026-1

22. Panin A., Adamiec G., Buylaert J.P., Matlakhova E., Moska P., and Novenko E. Two late pleistocene climate-driven incision/aggradation rhythms in the Middle Dnieper River basin, west-central Russian plain. Quarternary Science Reviews. 2017. Vol. 166. P. 266– 288. https://doi.org/10.1016/j.quascirev.2016.12.002

23. Peltier W.R., Argus D.F., and Drummond R. Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth. 2015. Vol. 120 (1). P. 450–487. https://doi.org/10.1002/2014JB011176

24. Prescott J.R. and Hutton J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements. 1994. Vol. 23 (2–3). P. 497–500. https://doi.org/10.1016/1350-4487(94)90086-8

25. Schik S. and Pisareva V. Main patterns of the Pleistocene lakes’ spreading on the Russian plain. Chronostratigraphic divisions of the Pleistocene History of the Pleistocene lakes. Saint Petersburg: Nauka (Publ.), 1998. P. 8–23. (in Russ.)

26. Schukina E. The Upper Volga’s terraces and its relation to glacial sediments of Gorkovsko-Ivanovskiy krai. Byulleten’ Moskovskogo obshchestva ispytatelei prirody. Otdel geologicheskii. 1993. Vol. 11. No. 3. P. 195–224. (in Russ.)

27. Sidorchuk A., Panin A., and Borisova O. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology. 2009. Vol. 113 (3–4). P. 137–157. https://doi.org/10.1016/j.geomorph.2009.03.007

28. Sohbati R., Murray A., Lindvold L., Buylaert J.-P., and Jain M. Optimization of laboratory illumination in optical dating. Quaternary Geochronology. 2017. Vol. 39. P. 105–111. https://doi.org/10.1016/j.quageo.2017.02.010

29. Spada G. and Melini D. SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling. Geoscientific Model Dev. 2019. Vol. 12. P. 5055–75.

30. Svendsen J.I., Alexanderson H., Astakhov V.I., Demidov I., Dowdeswell J.A., Funder S., Gataullin V., Henriksen M., Hjort C., Houmark-Nielsen M., Hubberten H.W., Ingólfsson O., Jakobsson M., Kjær K.H., Larsen E., Lokrantz H., Lunkka J.P., Lyså A., Mangerud J., Matiouchkov A., Murray A., Möller P., Niessen F., Nikolskaya O., Polyak L., Saarnisto M., Siegert C., Siegert M.J., Spielhagen R.F., and Stein R. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews. 2004. Vol. 23 (11–13). P. 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008

31. Thomsen K.J., Murray A.S., Jai M., and Bøtter-Jensen L. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements. 2008. Vol. 43 (9–10). P. 1474–1486. https://doi.org/10.1016/j.radmeas.2008.06.002

32. Thrasher I.M., Mauz B., Chiverrell R.C., and Lang A. Luminescence dating of glaciofluvial deposits: a review. Earth-Science Reviews. 2009. Vol. 97 (1–4). P. 133– 146. https://doi.org/10.1016/j.earscirev.2009.09.001

33. Tockner K., Uehlinger U., and Robinson C.T. Rivers of Europe. London: Academic Press (Publ.), 2009. 942 p. Utkina A.O. Modelling the glacial isostatic adjustment using SELEN. Natural and technical sciences. 2020. No. 8. P. 110–115. (in Russ.)

34. Utkina A.O., Panin A.V., Kurbanov R.N., and Murray A.S. Unexpectedly old luminescence ages as an indicator of the origin of the upper Volga River valley sediments. Quaternary Geochronology. 2022. Vol. 73. 101381. https://doi.org/10.1016/j.quageo.2022.101381

35. Wallinga J. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas. 2002. Vol. 31 (4). P. 303– 322. https://doi.org/10.1111/j.1502-3885.2002.tb01076.х


Review

For citations:


Utkina A.O., Panin A.V. Upper Volga’s incision valleys: geomorphological aspects and development history. Geomorfologiya. 2022;53(5):162-172. https://doi.org/10.31857/S0435428122050182

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)