Preview

Geomorfologiya i Paleogeografiya

Advanced search

Rock magnetic methods in the study of the loess-soil series of Eastern Siberia

https://doi.org/10.31857/S2949178924020036

EDN: POGZIG

Abstract

Rock magnetic methods complement geological and granulometric studies of subaerial deposits, allowing to solve relevant and interesting problems in terms of paleogeography. The magnetic characteristics are numerical and provide a reasonable basis for a correct comparison of subaerial deposits among themselves, for a more detailed stratigraphic dissection of sediments and specifying their genesis, for the identification of marker horizons, and for the correlation of the data of different methods. The paper discusses the main mechanisms of formation of the magnetic properties of loess-soil series in different regions (“Chinese” and “Alaskan”) and peculiarities in the interpretation of rock magnetic parameters within the framework of different mechanisms. The paleoclimatic informativity of rock magnetic parameters in different physical-geographic settings is analyzed. The fundamental differences in the formation of the magnetic properties of the loess-soil series of Siberia (“Siberian” mechanism) are shown and the principles of paleoclimatic interpretation of rock magnetic data on the basis of more than 40 sections of subaerial complexes of southern Western, Preenisei and Eastern Siberia are developed. Based on changes in rock magnetic parameters, the trend of climatic changes during the quaternary period, which consists in the change from the “pedogenic” mechanism to the “Siberian” one and then to the “Alaskan” one, was revealed using the example of subaerial sediments of Eastern Siberia. This difference in mechanisms may serve as a criterion for diagnosing subaerial deposits of Eopleistocene age.

About the Authors

A. Yu. Kazansky
Lomonosov Moscow State University, Faculty of Geology; Geological Institute RAS, Moscow
Russian Federation


G. G. Matasova
Geological Institute RAS, Moscow; Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


A. A. Shchetnikov
Geological Institute RAS, Moscow; Institute of the Earth’s Crust SB RAS, Irkutsk; Vinogradov Institute of Geochemistry SB RAS, Irkutsk
Russian Federation


I. A. Filinov
Geological Institute RAS, Moscow; Institute of the Earth’s Crust SB RAS, Irkutsk; Vinogradov Institute of Geochemistry SB RAS, Irkutsk
Russian Federation


References

1. Akram H., Yoshida M. (1997) Ultra-fine magnetite/maghemite and their magnetic granulometry in the Late Pleistocene loess-paleosol deposits, Haro River Area, Attock Basin, Pakistan. Proceedeings of Inter-PARMAGS Seminar (1996). Paleomagnetism of Collision Belts, Recent Progress in Geomagnetism, Rock Magnetism and Paleomagnetism. No. 1. Р. 153-197.

2. Alexeeva, N.V. (2005). Evoljuciya prirodnoj sredy Zapadnogo Zabajkal'ya v pozdnem kajnozoe (po dannym fauny melkih mlekopitajushchih):Environmental Evolution of Late Cenozoic of West Transbaikalia (Based on Small Mammal Fauna). Moscow: GEOS, (Publ.). 14 p. (in Russ.).

3. Alexeeva, N. V., Erbajeva, M. A. (2005) Changes in the fossil mammal faunas of Western Transbaikalia during the Pliocene–Pleistocene boundary and the Early–Middle Pleistocene transition. Quaternary International. Vol. 131. No. 1. P. 109–115. doi:10.1016/j.quaint.2004.07.002 .

4. An Z.S., Kukla G.J., Porter S.C. et al. (1991) Magnetic susceptibility evidence of Monsoon variation on the Loess Plateau of Central China during the last 130000 years. Quaternary Research. Vol. 36. P. 29-36. https://doi.org/10.1144/SP342.8

5. Banerjee S.K., Hunt C.P., Liu X.M. (1993) Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: A rock-magnetic approach. Geophysical Research Letters. No. 20. Р. 843-846. https://doi.org/10.1029/93GL00908

6. Bazarov D.B., Erbaeva M.A., Rezanov I.N. (1976) Geologiya i fauna opornyh razrezov antropogena Zapadnogo Zabajkal'ya: Geology and fauna of reference sections of the Anthropogenic of Western Transbaikalia. . Moscow: Nauka (Publ.). 148 s.

7. Bazarov D.B. (1986) Kajnozoi Pribajkal'ya i Zapadnogo Zabajkal'ya ( Cenozoic of the Baikal Region and Western Transbaikalia: Novosibirsk: Nauka. (Publ.). 182 p.

8. Beget J.E., Stone D.B., Hawkins D.B. (1990) Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology.Vol. 18.No. 1. P. 40-43. https://doi.org/10.1130/0091-7613(1990)018<0040:pfomsv>2.3.co;2

9. Berger A. (1988) Milankovitch theory and climate. Reviews of Geophysics. Vol. 26. P. 624-657. https://doi.org/10.1029/RG026i004p00624

10. Bidegain J.C., Evans M.E., van Velzen A.J. (2005) A magnetoclimatological investigation of Pampean loess, Argentina. Geophysical Journal International. Vol.160. No. 1. Р. 55-62. https://doi.org/10.1111/j.1365-246X.2004.02431.x

11. Bosken J., Obreht I., Zeeden C. et al. (2019) High-resolution paleoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quaternary International. Vol. 502. Part A. 26. P. 95-107. https://doi.org/10.1016/j.quaint.2017.12.008

12. Brookfield M.E. (2011) Aeolian processes and features in cool climates. Geological Society, London, Special Publications. P. 241 258. https://doi.org/10.1144/SP354.16

13. Chlachula J., Evans M.E. , Rutter N.W. (1998) A magnetic investigation of a Late Quaternary loess/palaesol record in Siberia. Geophysical Journal International. Vol. 132. P. 128-132. https://doi.org/10.1046/j.1365-246x.1998.00399.x

14. Chlachula J., Rutter N.W, Evans M.E. (1997) A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Canadian Journal of Earth Sciences. Vol. 34. P. 679-686. https://doi.org/10.1139/e17-054

15. Day R., Fuller M., Schmidt V.A. (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors . Vol. 13. P. 260–267. https://doi.org/10.1016/0031-9201(77)90108-X

16. Dearing J., Liningstone I, Zhou L.P. (1996) A late Quaternary magnetic record of Tunisian loess and its climatic significance. Geophysical Research Letters. Vol. 23. No. 2. P. 189-192. https://doi.org/10.1029/95GL03132

17. Dearing J.A., Dann R.J.L., Hay K. et al. (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International. Vol. 124. P. 228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x

18. Deng C., Zhu R., Verosub K.L. et al. (2004) Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research: Solid Earth. Vol. 109, B01103. https://doi.org/10.1029/2003JB002532

19. Ding Z.L., Ranov V., Yang S.L. et al. (2002) The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters. Vol. 200. P. 387-400. https://doi.org/10.1016/S0012-821X(02)00637-4

20. Dunlop D.J. (2002) Theory and application of the Day plot (M-rs/M-s versus H-cr/H-c). 1. Theoretical curves and tests using titanomagnetite data Journal of Geophysical Research: Solid Earth Vol. 107(B3). P, 2046–2067. https://doi.org/10.1029/2001JB000487.

21. Erbajeva M.A. (1998) Late Pliocene Itansinian faunas in Western Transbaikalia. The Dawn of the Quaternary. Mededelingen Nederlands Instituut voor Toegepaste Geowettenschappen TNO. Vol. 60. P. 417-430.

22. Erbajeva M.A., Alexeeva N.V. (2000) Pliocene and Pleistocene biostratigraphic succession of Transbaikalia with emphasis on small mammals. Quaternary International . Vol. 68-71, pp. 67-75.

23. Erbajeva, M.A., Shchetnikov, A.A., Kazansky, A.Y. et al. (2019) The New Pleistocene Ulan-Zhalga Key Section in Western Transbaikalia. Doklady Earth Sciences. Vol. 488, No. P. 1035–1038. https://doi.org/10.1134/S1028334X1909023X

24. Evans M.E., & Heller F. (2003). Environmental Magnetism New York: Academic Press.299 p.

25. Evans T.E., Heller F. (1994) Magnetic enhancement and palaeoclimate: study of a loess/paleosol couplet across the Loess Plateau of China. Geophysical Journal International. Vol. 117. P. 257-264. https://doi.org/10.1111/j.1365-246X.1994.tb03316.x

26. Feng, Z.-D., Wang, H. B., Olson, C. et al. (2004). Chronological discord between the last interglacial paleosol (S1) and its parent material in the Chinese Loess Plateau. Quaternary International, Vol. 117. No. 1. P. 17–26. https://doi.org/10.1016/s1040-6182(03)00112-5

27. Forster Th., Heller F., Evans M.E. et al. (1996) Loess in the Czech Republic: magnetic properties and paleoclimate. Studia Geophysica et Geodaetica. Vol. 40. P. 243-261. https://doi.org/10.1007/BF02300741

28. Galanin A.A. Late Quaternary sand covers of Central Yakutia (Eastern Siberia) structure, facies and paleoenvironment significance. Earth's Cryosphere. Vol.. XXV. No. 1. P. 3-34. (in Russ.) https://doi.org/10.15372/KZ20210101

29. Golubtsov V.A., Ryzhov Yu.V., Kobylkin D.V., 2017. Pochvoobrazovanie i osadkonakoplenie v Selenginskom srednegor'e v pozdnelednikov'e i golocene: Late Glacial and Holocene Soil Formation and Sedimentation in the Selenga Middle Mountains. Irkutsk: Institute of Geography SB RAS, Irkutsk (Publ.). 139 p. (in Russ.)

30. Hao Q., Guo Z. (2005) Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: Implications for monsoon evolution. Journal of Geophysical Research: Solid Earth. Vol. 110, B12101, https://doi.org/10.1029/2005JB003765.

31. Hayward R.K. and Lowell T.V. (1993) Variations in loess accumulation rates in the mid-continent, United States, as reflected by magnetic susceptibility. Geology. Vol. 21. P. 821-824.

32. Heller, F., & Liu T. (1984). Magnetism of Chinese loess deposits. Geophysical Journal International. Vol. 77. No. 1. P. 125–141. https://doi.org/10.1111/j.1365-246x.1984.tb01928.x

33. Hunt C.P., Banerjee S.K., Han J., et al. (1995) Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China. Geophysical Journal International. Vol. 123. P. 232-244. https://doi.org/10.1111/j.1365-246X.1995.tb06672.x

34. Hus J.J., Han J. (1992) The contribution of loess magnetism to the retrieval of past global changes - some problem. Physics of the Earth and Planetary Interiors. Vol. 70. No. 3–4. P. 154-168. https://doi.org/10.1016/0031-9201(92)90178-X

35. Ivanova, V. V., Erbajeva, M. A., Shchetnikov, A. A. et al. (2019) Tologoi key section: A unique archive for Pliocene-Pleistocene paleoenvironment dynamics of transbaikalia, bikal rift zone. Quaternary International. Vol. 519. No. 10. P. 58–73. https://doi.org/10.1016/j.quaint.2018.11.004

36. Jie Chen J., Stevens T., Yang T. et al. Revisiting Late Pleistocene Loess–Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Frontiers in Earth Science. Vol. 9. 808157. https://doi.org/10.3389/feart.2021.808157

37. Kazansky A.Yu., Kravchinsky V.A., Zykina V.S. (1998) et al. Possibilities of magnetic methods for revealing the climatic signal in loess-soil sections of Siberia. Problemy rekonstrukcii klimata i prirodnoi sredy golocena i plejstocena Sibiri. Novosibirsk: Imstitut arheologii i etnografii (Publ.). P. 191-202. (in Russ.).

38. Kazansky, A. Y., Shchetnikov, A. A., Matasova, G. G. et al., (2022) Palaeomagnetic data from the late Cenozoic Tagay section (Olkhon island, Baikal region, Eastern Siberia). Palaeobiodiversity and Palaeoenvironments Vol. 102. No. 4. P. 943–967. https://doi.org/10.1007/s12549-022-00559-7

39. Kazansky, A. Yu., Matasova, G. G., Shchetnikov, A. A. et al. (2022a) The Kitoysky most section is a new type of the Upper Quaternary deposits of Predbaikalia. Geodinamicheskaya evoyutsiya litosfery Tsentral'no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy nauchnoi konferencii.. Issue 20, Irkutsk: IZK SB RAS (Publ.). P. 117-119 (in Russ).

40. Kazansky, A. Yu., Matasova, G. G., Shchetnikov, A. A., et al. (2022b) Results of comprehensive studies of the Igetei reference section (Middle Upper Neopleistocene, Predbaikalia). Geodinamicheskaya evoyutsiya litosfery Tsentral'no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy nauchnoi konferencii... Issue 20, Irkutsk: IZK SB RAS Irkutsk (Publ.). P. 119-122 (in Russ).

41. Költringer, C., Stevens, T., Bradák, B. et al., (2021). Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quaternary Research, 103, 49-73. https://doi.org/10.1017/qua.2020.73

42. Kukla G., Heller F., Liu X.M., et al. (1988) Pleistocene climates in China dated by magnetic susceptibility. Geology. Vol. 16. P. 811-814. https://doi.org/10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2.

43. Laag C, Hambach U, Zeeden C, et al. (2021) A Detailed Paleoclimate Proxy Record for the Middle Danube Basin Over the Last 430 kyr: A Rock Magnetic and Colorimetric Study of the Zemun Loess-Paleosol Sequence. Frontiers in Earth Science. Vol. 9, 9:600086. https://doi.org/10.3389/feart.2021.600086

44. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. Vol. 50 No. 1. PA1003. https://doi.org/10.1029/2004pa001071

45. Liu X.M., Shaw J., Liu T.S. et al. (1992) Magnetic mineralogy of Chinese loess and its significance. Geophysical Journal International. Vol. 108. P. 301-308. https://doi.org/10.1111/j.1365-246X.1992.tb00859.x

46. Liu X.M., Shaw J., Liu T.S. et al. (1993) Magnetic susceptibility of the Chinese loess-paleosol sequence: environmental change and pedogenesis. Journal of the Geological Society. Vol. 150. P. 583-588. https://doi.org/10.1144/gsjgs.150.3.0583

47. Maher B.A., Taylor R.M. (1988) Formation of ultrafine-grained magnetite in soil. Nature. Vol. 336. P. 368-370. https://doi.org/10.1038/336368a0

48. Maher B.A., Thompson R. (1991) Mineral magnetic record of the Chinese loess and palaeosols. Geology. Vol. 19. P. 3-6. https://doi.org/10.1130/0091-7613(1991)019<0003:MMROTC>2.3.CO;2

49. Maher, B.A. (2011) The Magnetic Properties of Quaternary Aeolian Dusts and Sediments, and Their Palaeoclimatic Significance. Aeolian Research, Vol. 3. P. 87-144. https://doi.org/10.1016/j.aeolia.2011.01.005

50. Martinson D.G., Pisias N.G., Hays J.D. et al. (1987) Age dating and the orbital theory of the Ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research. Vol. 27. P. 1-29. https://doi.org/10.1016/0033-5894(87)90046-9

51. Matasova G., Petrovsky E., Jordanova N. et al. (2001) Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia: palaeoenvironmental implications. Geophysical Journal International. Vol. 147. No 2. P. 367-380 https://doi.org/10.1046/j.0956-540X.2001.01544.x

52. Matasova G.G., Kazansky A.Yu, Zykina V.S. (2003) Superposition of Alaskan and Chinese models of paleoclimate records in magnetic properties of Upper and Middle Neopleistocene deposits in southern West Siberia. Russian Geology and Geophysics. Vol. 44. . No. 7. P. 607-619

53. Matasova G.G., Kazansky A.Yu. (2004) Magnetic properties and magnetic fabrics of Pleistocene loess/palaeosol deposits along west-central Siberian transect and their palaeoclimatic implications. Magnetic Fabric: Methods and Applications. Geological Society, London, Special Publications. – London. Vol. 238. P. 145-173. https://doi.org/10.1144/GSL.SP.2004.238.01.11

54. Matasova G.G., Kazansky A.Yu. (2005) Contribution of paramagnetic minerals to magnetic properties of loess-soil deposits in Siberia and its paleoclimatic implications. Izvestiya Physics of the Solid Earth Vol. 41. No 9. P. 758-766

55. Matasova G.G., Kazansky A.Yu., Shchetnikov A.A., Filinov I.A. (2023) The Kuytun Valley as an Exogeodynamic Test Site for the Application of Methodology for Interdisciolinary Research in the Sedimentation Settings of Loess-like Cover Deposits in the Late Pleistocene Transbaikalia. Geodynamics & Tectonophysics. Vol. 14 №. 3. Article 0303. https://doi.org/10.5800/GT-2023-14-3-0703 (in Russ.).

56. Matasova, G. G., Kazansky, A. Y., Shchetnikov, A. A. et al. (2020) New rock- and paleomagnetic data on quaternary deposits of the Tologoi key section, western Transbaikalia, and their paleoclimatic implications. Izvestiya. Physics of the Solid Earth. Vol.56. No. 3. P. 392–412. https://doi.org/10.1134/S1069351320030052

57. Mats, V.D., Pokatilov, A.G., Popova, S.M. et al. (1982) Pliocen i pleistocen Srednego Baikala (Pliocene and Pleistocene of the Middle Baikal). Novosibirsk: Nauka (Publ.). 195 p. (in Russ.)

58. Medvedev G. I., Vorob'eva G. A. (1987) Igetei, a reference section of Upper Pleistocene subaerial deposits and Paleolithic cultures in southern Eastern Siberia. Geologiya kajnozoya juga Vostochnoj Sibiri. Irkutsk: Irkutsk university (Pub.), P. 20–21. (in Russ.).

59. Medvedev G.I., Saveliev N.A., and Svinin V.V. (Eds.) (1990) Stratigrafiya, paleogeografiya i arheologiya juga Srednej Sibiri: K XIII Kongressu INKVA (KNR, 1991):(stratigraphy, Paleogeography, and Archaeology in the South of Middle Siberia: Toward the XIIIth Congress of the INKVA (PRC, 1991)). Irkutsk: Irkutsk University (Publ.) 165 p. (in Russ.).

60. Meng X., Derbyshire E. and Kemp R.A. (1997) Origin of the magnetic susceptibility signal in Chinese loess. Quaternary Science Reviews. Vol. 16. P. 833-839. https://doi.org/10.1016/S0277-3791(97)00053-X

61. Milanković M. (1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen.. Köppen, W.; Geiger R. (Hrsg.): Handbuch der Klimatologie, Bd. 1: Allgemeine Klimalehre, Berlin: Borntraeger, S. 176.

62. Nawrocki, J. (1992) Magnetic Susceptibility of Polish loesses and loess-like sediments. Geologicky Zbornik. Geologica Carpathica. Vol. 43. P. 179-180.

63. Nawrocki, J.; Wojcik, A.; Bogucki, A. (1996) The magnetic susceptibility record in the Polish and western Ukrainian loess-palaeosol sequences conditioned by palaeoclimate. Boreas. Vol. 25. No. 3. P. 161-169. https://doi.org/10.1111/j.1502-3885.1996.tb00845.x

64. Necula C., Dimofte D., Panaiotu C. (2015) Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania). Geophysical Journal International. Vol. 202. No. 3. P. 1733–1748. https://doi.org/10.1093/gji/ggv250)

65. Pokatilov A.G. (2004) Paleontologiya i stratigrafiya kajnozoya yuga Vostochnoi Sibiri i sopredel'nykh territorii: Paleontology and stratigraphy of the Cenozoic of the south of East Siberia and adyacent territories. Irkutsk: IrGTU (Publ.). 275p. (in Russ.).

66. Rolph T.C., Shaw J., Derbyshire E. et al. (1989). A detailed geomagnetic record from Chinese loess. Phys. Earth. Planet. Inter. Vol. 56.- P. 151-164. https://doi.org/10.1016/0031-9201(89)90044-7

67. Schellenberger A., Heller F., Veit H, (2003) Magnetostratigraphy and magnetic susceptibility of the Las Carreras loess–paleosol sequence in Valle de Tafı́, Tucumán, NW-Argentina. Quaternary International Vol. 106–107. P.159-167. https://doi.org/10.1016/S1040-6182(02)00170-2

68. Shackleton N.J., Berger A., Peltier W.R. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh, Earth Science. Vol. 81. P. 251-261. https://doi.org/10.1017/s026359330002078

69. Sun J., Liu T. (2000) Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth and Planetary Science Letters. . Vol. 180. P. 287-296. https://doi.org/10.1016/S0012-821X(00)00175-8

70. Sun J.M., Kohfeld K.E., Harrison S.P. (Eds.) (2000) Records of aeolian dust deposits on the Chinese Loess Plateau during the Late Quaternary. Technical Reports of Max-Planck Institute of. Jena, Germany: Max-Planck - Institute for Biogeochemistry. 318 p.

71. Taylor, S. N., and F. Lagroix (2014), Mineral magnetic analysis of the Upper Pleniglacial loess-palaeosol deposits from Nussloch (Germany): An insight into local environmental processes, Geophysical Journal International. Vol. 199. P.1463– 1480.) https://doi.org/10.1093/gji/ggu331

72. Velichko A.F. (Ed.) (2002) Dinamika landshaftnyh komponentov i vnutrennih morskih bassejnov Severnoj Evrazii za poslednie 13 000 let. Atlas-monografija (Dynamics of landscape components and inland marine basins of Northern Eurasia over the past 13,000 years. Atlas-Monograph) Moscow: GEOS (Publ.). 231 p.

73. Vidic N.J., TenPas J.D., Verosub K.L. et al., (2000) Separation of pedogenic and lithogenic components of magnetic susceptibility in the Chinese loess /palaeosol sequence as determined by the CBD procedure and a mixing analysis. Geophysical Journal International. Vol. 142. P. 551-562. https://doi.org/10.1046/j.1365-246x.2000.00178.x.

74. Vlag P.A., Oches E.A., Banerjee S.K. et al. (1999) The paleoenvironmental - magnetic record of the Gold Hill Steps loess section in central Alaska. Physics and Chemistry of the Earth. Vol. 24. No. 9. P. 779-783. https://doi.org/10.1016/S1464-1895(99)00114-3

75. Vlaminck S., Kehl M., Rolf C. et al. (2018) Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia – Detailed insights from the loess profile Toshan (NE Iran). Quaternary Science Reviews. Vol. 180. No. 15. P. 75-95. https://doi.org/10.1016/j.quascirev.2017.11.010

76. Volkov. I.A. (1971) Pozdnechetvertichnaja subajeral'naja formacija: Late Quaternary Subaerial Formation. Mоscow: Nauka (Publ.) 1971. 254 p. (in Russ.).

77. Zhdanova A.I., Kazansky A.Yu., Zol'nikov I.D. et al., (2007) Application of geological and petromagnetic methods to facies-genetic division of subaerial deposits in the Ob' region near Novosibirsk (Ogurtsovo key section). Russian Geology and Geophysics. Vol. 48. No. 4. P. 349-360. https://doi.org/10.1016/j.rgg.2007.03.003

78. Zhu R.X., Matasova G., Kazansky A., et al. (2003) Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophysical Journal International. Vol. 152. No 2. P. 335-343 https://doi.org/10.1046/j.1365-246X.2003.01829.x

79. Zhu Rixiang, Kazansky A., Matasova G. et al. (2000). Rock-magnetic investigation of Siberia loess and its implication. Chinese Science Bulletin. Vol. 45. №. 23. P. 2192-2197. https://doi.org/10.1007/BF02886328


Supplementary files

Review

For citations:


Kazansky A.Yu., Matasova G.G., Shchetnikov A.A., Filinov I.A. Rock magnetic methods in the study of the loess-soil series of Eastern Siberia. Geomorfologiya i Paleogeografiya. 2024;55(2):63-85. (In Russ.) https://doi.org/10.31857/S2949178924020036. EDN: POGZIG

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)