Debris flow relief of the Malaya Paipudyna basin (the Polar Ural Mountains)
https://doi.org/10.31857/S2949178923030088
EDN: WDKBWN
Abstract
We studied the debris f low relief of the Malaya Paipudyna basin, the Polar Ural Mountains. Based on the analysis of remote sensing data and field surveys, we established that 14 debris f low basins are located on the territory. We found traces of five slushflow occurrence in the streams in the spring of 2021. Typical landforms for different morphodynamic zones of debris f low basins were identified. The initiation zones of debris f lows are mainly represented by catchment funnels on the slopes of the Bolshoi and Maliy PaIpudynskii ranges. The transit zones V-shaped bottom incisions alternate with boxand trough-shaped transverse profile. Within the debris f low fans, two generations of accumulative debris f low relief are clearly distinguished. Young accumulation zones are represented by pebble-boulder ridges up to 0.5 m high, localized directly in the nearchannel areas of debris f low fans. Usually, they are either devoid of soil and vegetation cover, or are overgrown only by herbs. Ancient debris f low fans are triangular in shaped with convex transverse profile, consisting of a system of ridges and hollows, and overgrown with shrubs. The area of young accumulation zones for each debris f low basin is no more than 0.03 km2, the area of ancient accumulation zones is 0.4 km2. Debris f low fans are superimposed on the bottom of the trough valley of Malaya Paipudyna, which is mainly the surface of glacial accumulation. Probably, the formation of these fans began after the degradation of the last extensive glaciation of the territory. We calculated the morphometric features of the debris f low basins.
About the Authors
A. I. RudinskayaRussian Federation
Moscow
Yu. R. Belyaev
Russian Federation
Faculty of Geography
Moscow
References
1. Anan’ev G.S. (1980). Geomorphological province of Novaja zemlja Island and the Ural Mountains. Geomorfologicheskoe raionirovanie SSSR i prilegayushchikh morei. Moscow: Vysshaya shkola (Publ.). P. 62–73. (in Russ.)
2. Astakhov V. (2017). Late Quaternary glaciation of the northen Urals: a review and a new observations. Boreas. Vol. 47. P. 379–389. https://doi.org/10.1111/bor.12278
3. Astakhov V.I. (2017). Novaya model' pleistotsenovogo oledeneniya na severe Urala (New model of the Pleistocene glaciation in the north Urals. Doklady akademii nauk. Vol. 476. No. 5. P. 567–570. (in Russ.). https://doi.org/10.7868/S0869565217290199
4. Cherkasova V.A., Ivanov M.N. (2020). Degradation of the glaciers of the Polar Urals. Global’nye problemy Arktiki i Antarktiki [Electronic data]: sbornik nauch. materialov Vseros. konf. s mezhdunar. uchastiem, posvyashchennyi 90-letiyu so dnya rozhdeniya akademika N.P. Lavjorova. Arhangel’sk. P. 180–182. (in Russ.). (access date: 15.02.2023)
5. Filosofov V.P., Denisov S.V. (1963). On the order of river valleys and their connection with tectonic. Morfometricheskii metod pri geologicheskikh issledovaniyakh. Saratov: Saratov University (Publ.). P. 487–509. (in Russ.)
6. Garankina E., Belyaev V., Belyaev Yu. et al. (2019). Integration of landforms, deposits and paleosols analysis for reconstructing Holocene debris f low activity in the low mountains of Kola Peninsula. Climate Change Impacts on Sediment Dynamics: Measurement, Modelling and Management. Chalov S., Golosov V., Li R., Tsyplenkov A. (Eds.). Springer Proceedings in Earth and Environmental Sciences (SPEES). Cham: Springer. P. 47–51. https://doi.org/10.1007/978-3-030-03646-1_9
7. Golubev G.N., Labutina I.A. (1966). Deciphration of highmountain debris f lows using aerial photographs. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 1. P. 48–53. (in Russ.)
8. Hodakov V.G. (1964). The processes of redistribution of snow and snow cover in the mountains. MGI. Vol. 9. Moscow: VINITI (Publ.). P. 210–215. (in Russ.)
9. Hodakov V.G., Il’ina E.A. (1989). Snow and ice phenomena in the Polar Urals. MGI. Vol. 65. Moscow: VINITI (Publ.). P. 110–118. (in Russ.)
10. Ivanov M.N. (2012). Polar Urals Glaciers and Periglacial Geomorphology. TICOP Excursion Guidebook. Tyumen: Pechatnik (Publ.). 50 p.
11. Ivanov M.N. (2013). Evolyutsiya oledeneniya Polyarnogo Urala v pozdnem golotsene (Evolution of glaciation in the Polar Urals in the Late Holocene). Moscow: Geograficheskii fakul’tet MGU (Publ.). 200 p. (in Russ.)
12. Kazak A.P. (Eds.). (2013). Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1: 200000. Karta dochetvertichnykh obrazovanii. List Q-41-XII (State geological map of the Russian Federation, scale 1:200000. Map of pre-Quaternary formations. Sheet Q-41-XII). Saint-Petersburg: VSEGEI (Publ.). 1 p. (in Russ.)
13. Mangerud J., Gosse J., Matiouchkov A., Dolvik T. (2008). Glaciers in the Polar Urals, Russia, were not much larger during the Last Global Glacial Maximum than today. Quaternary Science Reviews. No. 27. P. 100–115. https://doi.org/10.1016/j.quascirev.2008.01.015
14. Meyer H., Kostrova S., Meister Ph. et al. (2022). Lacustrine diatom oxygen isotopes as palaeo precipitation proxy – Holocene environmental and snowmelt variations recorded at Lake Bolshoye Shchuchye, Polar Urals, Russia. Quaternary Science Reviews. Vol. 290. 107620. https://doi.org/10.1016/j.quascirev.2022.107620
15. Perov V., Chernomorets S., Budarina O. et al. (2017). Debris f low hazards for mountain regions of Russia: regional features and key events. Natural Hazards. No. 88. P. 199–235. https://doi.org/10.1007/s11069-017-2841-3
16. Perov V.F. (2012). Selevedenie (Mudflow science). Moscow: MGU (Publ.). 274 p. (in Russ.)
17. Poznanin V.L. (1975). Debris f lows of the Northen part of the Polar Urals. Izucheniie i ohrana gidrosfery. Moscow: MFGO (Publ.). P. 10–11. (in Russ.)
18. Rudinskaya A.I., Belyaev Yu.R. (2022). Morphometric features of debris f low basins of the mountains. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 5. P. 746–752. https://doi.org/10.31857/S2587556622050107
19. Rudinskaya A.I., Belyaev Yu.R., Belyaev V.R. et al. (2022). Geomorphologic positions of debris f low basins in the Lovozerskiye Tundry mountainous area. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 2. P. 119–132. (in Russ.)
20. Sadov A.V. (1972). Aerometody izucheniia selei (Aerial methods for studying debris f lows). Moscow: Nedra (Publ.). 126 p. (in Russ.)
21. Shishkin M.A. (2007). Assumed directions of movement of Neopleistocene glaciers in Pai-Khoi and the Polar Urals based on the analysis of the composition of moraine boulders. Regional’naya geologiya i metallogeniya. No. 30–31. P. 207–212. (in Russ.)
22. Solomina O., Ivanov M., Bradwall T. (2010). Lichenometric studies on moraines in the Polar Urals. Geografiska Annaler. Series A, Physical Geography. Vol. 92. No. 1. P. 81–99.
23. Surova T.G., Troickii L.S., Punning Ja.-M.K. (1974). Development of glaciation in the Polar Urals in the late Pleistocene and Holocene (in connection with the study of deposits of ice-dammed lakes). MGI. Hron., obs. Vol. 23. Moscow: VINITI (Publ.). C. 61–68. (in Russ.)
24. Surova T.G., Troickij L.S., Punning Ja.-M. (1975). Paleogeography and absolute chronology of the Holocene of the Polar Urals. Izvestiya AN ESSR. Himiya, Geologiya. Vol. 24. No. 2. P. 152–159. (in Russ.)
25. Svendsen J.I., Færseth L.M., Gyllencreutz R. et al. (2018). Glacial and environmental changes over the last 60000 years in the Polar Ural Mountains, Arctic Russia, inferred from a high-resolution lake record and other observations from adjacent areas. Boreas. Vol. 48. No. 2. P. 407–431. https://doi.org/10.1111/bor.12356
26. Svendsen J.I., Krüger L.C., Mangerud J. et al. (2014). Glacial and vegetation history of the Polar Ural Mountains in Northern Russia during the Last Ice Age, Marine Isotope Stages 5-2. Quaternary Science Reviews. Vol. 92. P. 409–428. https://doi.org/10.1111/j.1502-3885.2012.00269.x
27. Svendsen J.I., Magnerud J., Nazarov D. et al. (2023). Chapter 16 – The Polar Ural Mountains: deglaciation history. European Glacial Landscapes. The Last Deglaciation. D. Palacios, J.M. García-Ruiz, Ph.D. Hughes, N. Andrés. (Eds.). P. 143–148. https://doi.org/10.1016/B978-0-323-91899-2.00053-X
Review
For citations:
Rudinskaya A.I., Belyaev Yu.R. Debris flow relief of the Malaya Paipudyna basin (the Polar Ural Mountains). Geomorfologiya i Paleogeografiya. 2023;54(3):14-25. (In Russ.) https://doi.org/10.31857/S2949178923030088. EDN: WDKBWN