Vegetation and climate changes in the north of the Central Kamchatka Depression in the Late Holocene
https://doi.org/10.31857/S2949178924040117
EDN: FFCQTJ
Abstract
In order to study the vegetation history of the northern part of the Central Kamchatka Depression, a core Kich was obtained and studied by lithological, tephrochronological, palynological analyses and radiocarbon dating. Palynological data allowed us to identify the main stages in the vegetation and climate development over the past 3000 years. By the end of the cool period at ~2.5 cal. kyr BP, in the Kich River valley poplar forests were replaced by alder, willow and stone birch forests. About 1.9 cal. kyr BP, sedge-dominated mire was replaced by grass meadows as a result of a series of the Shiveluch volcano eruptions and climate changes. As climate became drier stone birch forests spread about 1.2 cal. kyr BP. Since 0.8 cal. kyr BP, the areas of coniferous forests increase, first with the spread of larch and later spruce.
About the Authors
O. O. MukhametshinaRussian Federation
M. D. Shchekleina
Russian Federation
A. L. Zakharov
Russian Federation
References
1. Braiceva O.A., Melekescev I.V., Evteeva I.S. et al. (1968) Stratigrafiya chetvertichnyh otlozhenij i oledeneniya Kamchatki. (Stratigraphy of Quaternary deposits and glaciation of Kamchatka). Moscow: Nauka (Publ.). 228 p. (In Russ.)
2. Grichuk V.P., Zaklinskaya E.D. (1948) Analiz iskopaemyh pyl'cy i spor i ego primenenie v paleogeografii (Analysis of fossil pollen and spores and its application to paleogeography). Moscow: OGIZ, GEOGRAFGIZ (Publ.). 224 p. (In Russ.)
3. Egorova I.A. (1980) Palinologicheskaya harakteristika vulkanogenno-osadochnyh otlozhenij v primenenii u stratigrafii. Vulkanicheskij centr: stroenie, dinamika, veshchestvo (Karymskaya struktura) (Palynological characteristics of volcanic-sedimentary deposits as applied to stratigraphy. Volcanic center: structure, dynamics, substance (Karym structure)). Moscow: Nauka (Publ.). P. 52-76. (In Russ.)
4. Zaharihina L.V. (2014) The rate of Holocene peat accumulation in Kamchatka. Soil science. No. 6. P. 670–676. (In Russ.)
5. Kuprina N.P. (1970) Stratigrafiya i istoriya osadkonakopleniya plejstocenovyh otlozhenij Central'noj Kamchatki (Stratigraphy and sedimentation history of Pleistocene deposits of Central Kamchatka.) Trudy GIN AN SSSR (Publ.). Vol. 216. 148 p. (In Russ.)
6. Nejshtadt M. I. (1936) On some questions arising in connection with the study of the peat bogs of Kamchatka. In: Bulletin MOIGP otdelenie biologii. Vol. 45. No. 2. P. 159–170. (In Russ.)
7. Neshataeva V.YU. (2009) Rastitel'nost' poluostrova Kamchatka (Vegetation of the Kamchatka Peninsula). Moscow: KMK (Publ.). 537 p. (In Russ.)
8. Skiba L.A. (1975) Istoriya razvitiya rastitel'nosti Kamchatki v pozdnem kajnozoe (History of the development of vegetation in Kamchatka in the late Cenozoic). Moscow: Nauka (Publ.). 72 p. (In Russ.)
9. Weather and Climate. Weather of the Kluchi 2004 – 2020. Reference and information portal. [Electronic data]. Access way: http://www.pogodaiklimat.ru/climate/32389.htm. (access date: 10.12.2020).
10. Khotinsky N.A. (1977) Golocen Severnoj Evrazii: opyt transkontinental'noj korrelyacii etapov razvitiya rastitel'nosti i klimata. K X Kongressu INQUA (Velikobritaniya, 1977) (Holocene of Northern Eurasia: experience of transcontinental correlation of stages of development of vegetation and climate. To the Xth Congress of INQUA (Great Britain, 1977)). Moscow.: Nauka (Publ.). 200 p. (In Russ.)
11. Yakubov V.V., Chernyagina O.A. (2004) Katalog flory Kamchatki (sosudistye rasteniya) (Catalog of Kamchatka flora (vascular plants)). Petropavlovsk-Kamchatsky: Izdvo "Kamchatpress" (Publ.). 165 p. (In Russ.)
12. Andrén, E., Klimaschewski, A., Self, A.E. et al. (2015). Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East). Global and Planetary Change. 134. P. 41–54. https://doi.org/ 10.1016/j.gloplacha.2015.02.013
13. Blaauw, M., Christen, J.A. (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. P. 457-474. https://doi.org/10.1214/11-BA618
14. Brooks, S.J., Diekmann, B., Jones, V.J. et al. (2015). Holocene environmental change in Kamchatka: a synthesis. Global and Planetary Change. 134. P. 166–174. https://doi.org/10.1016/j.gloplacha.2015.09.004
15. Dirksen V., Dirksen O., Diekmann B. (2013) Holocene vegetation dynamics and climate change in Kamchatka Peninsula, Russian Far East. Review of Palaeobotany and Palynology. Vol. 190. P. 48–65. https://doi.org/10.1016/j.revpalbo.2012.11.010
16. Dirksen, V.G., Uspenskaia, O.N. (2006) The Holocene climate and vegetation changes in Eastern Kamchatka based on pollen, macrofossil and tephra data. Proceedings of 2nd Scientific Congress of East Asian Federation of Ecological Societies. EAFES, Niigata. P. 420.
17. Grimm E. (1987) CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences. V.13. P.13-35. https://doi.org/10.1016/0098-3004(87)90022-7
18. Grimm E.C. (1990) TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data. INQUA, Working Group on Data-Handling Methods. Newsletter. № 4. P. 5-7.
19. Heiri, O., Lotter A. F., Lemcke G. (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments. Reproducibility and comparability of results. Journal of Paleolimnology. 25. P. 101–110. http://dx.doi.org/10.1023/A:1008119611481
20. Hoff U., Biskaborn B.K., Dirksen V.G. et al. (2015) Holocene Environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake. Glob. Planet. Change. Vol. 134. P. 101-117. http://dx.doi.org/10.1016/j.gloplacha.2015.07.011
21. Jarosevich, E.J., Nelen, J.A., Norberg, J.A. (1980) Reference sample from electron microprobe analysis. Geostandards Newsletter. Vol. 4. P. 43–47. https://doi.org/10.1111/j.1751-908X.1980.tb00273.x
22. Jochum, K. P., Stoll, B., Herwig, K. et al. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. Vol. 7(2). P. 1–44. https://doi.org/10.1029/2005GC001060
23. Kuehn, K. A., Ohsowski, B. M., Francoeur et al. (2011) Contributions of fungi to carbon flow and nutrient cycling from standing dead Typha angustifolia leaf litter in a temperate freshwater marsh. Limnol. Oceanogr. Vol. 56 (2). P. 529–539. https://doi.org/10.4319/lo.2011.56.2.0529
24. Meyer H., Chapligin B., Hoff U. et al. (2014) Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts-Lake, Central Kamchatka, Russia. Global and Planetary Change. Vol. 134. P. 118–128. https://doi.org/10.1016/j.gloplacha.2014.04.008
25. Nazarova L., de Hoog V., Hoff U. et al. (2013) Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record. Quaternary Science Reviews. Vol. 67. P. 81–92. https://doi.org/10.1016/j.quascirev.2013.01.018
26. Nazarova L., Bleibtreu A., Hoff U. et al. (2017) Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by a chironomid record. Quaternary International. Vol. 447. P. 1-13. https://doi.org/10.1016/j.quaint.2016.10.008
27. Pendea I.F., Ponomareva V., Bourgeois J. et al. (2017) Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia). Quaternary Science Reviews. Vol. 157. P. 14-28. https://doi.org/10.1016/j.quascirev.2016.11.035
28. Ponomareva V., Kyle P., Pevzner M. et al. (2007) Holocene eruptive history of Shiveluch Volcano, Kamchatka peninsula, Russia. Volcanism and Subduction. The Kamchatka Region. Geophysical Monograph Series. Vol. 172. P. 263-282. https://doi.org/10.1029/172GM19
29. Portnyagin M. V., Ponomareva V., Zelenin E. et al. (2020) TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific). Earth System Science Data. Vol. 12. №. 1. P. 469-486. https://doi.org/10.5194/essd-12-469-2020
30. Reimer P., Austin W.E.N., Bard E. et al. (2020) The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon. Vol. 62 (4). P. 1–33. https://doi.org/10.1017/RDC.2020.41
31. Self A.E, Klimaschewski A., Solovieva N. et al. (2015) The relative influences of climate and volcanic activity on Holocene Lake. Global and Planetary Change. Vol. 134. P. 67-81. https://doi.org/10.1016/j.gloplacha.2015.06.012
32. Stockmarr J. (1971) Tablets with spores used in Absolute Pollen Analysis. Pollen et spores. Vol. 13. P. 615-621.
Supplementary files
Review
For citations:
Mukhametshina O.O., Shchekleina M.D., Zakharov A.L. Vegetation and climate changes in the north of the Central Kamchatka Depression in the Late Holocene. Geomorfologiya i Paleogeografiya. 2024;55(4):177-191. (In Russ.) https://doi.org/10.31857/S2949178924040117. EDN: FFCQTJ