Pingo-like features in the Pechora Sea: conditions, origin and stages of development
https://doi.org/10.31857/S2949178924020075
EDN: PNPYQE
Abstract
“Akademik Nikolay Strakhov” and all previously published data, a conceptual scheme of the pingo-like feature formation on the shelf of the Pechora Sea (south-eastern part of the Barents Sea between the islands of Kolguev and Vaygach) was developed. During interpreting the genesis of the bottom topography at a key-site with an area of about 12 km2, both new geophysical data obtained by the authors and previously published drilling materials were used. It has been established that formation of pingo-like features starts in the presence of submarine permafrost and subzero temperature of bottom waters under the influence of the fluid flow (degassing). Pingo-like feature development begins due to the formation of zones of abnormally high reservoir pressure below submarine permafrost as a result of vertical migration of fluids. The grouth of a pingo-like feature begins from the formation of a roll-like rise of the bottom due to the extrusion of frozen clayey strata to the near-surface part of the section. Subsequently, as a result of disruption of the continuity and partial thawing of permafrost, the growth of a pingo-like feature, which is essentially a mud volcanic structure, begins on the arch of the uplift. Fluid flow within a vertical channel up to the summit crater may be accompanied by freezing of the clayey strata as a result of the throttling effect. Mud flowing from the summit crater can freeze on the slopes of a pingo-like feature as a result of cooling of the fresh water contained in them under conditions of subzero bottom temperatures. A growth of the mud volcanic structure leads to a decrease in pressure near the base of submarine permafrost, that gradually thaws under the influence of fluid flow. This process leads to the gradual subsidence of roll-like rise and the appearance of compensation depressions. Based on the results of repeated monitoring of gas manifestations in water, it was established that more than half of the pingo-like features are currently active channels for the migration of fluids from the subsurface to the bottom surface and into the water column.
About the Authors
E. A. EremenkoRussian Federation
A. V. Kokhan Kokhan
Russian Federation
E. A. Moroz
Russian Federation
A. P. Denisova
Russian Federation
S. Yu. Sokolov
Russian Federation
A. D. Mutovkin
Russian Federation
References
1. Atlas: geologija i poleznye iskopaemye shel'fov Rossii (2004). M.: GIN RAN. 108 s. (in Russ.)
2. Blasco S., Bennett R., Brent T. et al. (2013) 2010 State of Knowledge: Beaufort Sea seabed geohazards associated with offshore hydrocarbon development. Geological Survey of Canada. Open File 6989. 340 p. https://doi.org/10.4095/292616
3. Bogoyavlensky V., Kishankov A., Yanchevskaya A. et al. (2018) Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences. 8(12). 453. https://doi.org/10.3390/geosciences8120453
4. Bondarev V.N., Rokos S.I., Kostin D.A. i dr. (2002) Podmerzlotnye skoplenija gaza v verhnej chasti osadochnogo chehla Pechorskogo morja. Geologija i geofizika. T. 43. № 7. S. 587–598. (in Russ.)
5. Denisova A.P., Moroz E.A., Eremenko E.A. i dr. (2022) Priznaki degazacii v oblasti rasprostranenija lednikovogo i vodno-lednikovogo rel'efa v severo-vostochnoj chasti Barencevomorskogo shel'fa. V sb.: Rel'ef i chetvertichnye obrazovanija Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. SPb: VNIIOkeangeologija im I.S. Gramberga. S. 78-86. https://doi.org/10.24412/2687-1092-2022-9-78-86/. (in Russ.)
6. Diak M., Böttcher M.E., Ehlert von Ahn C.M., et al. (2023) Permafrost and groundwater interaction: current state and future perspective. Front. Earth Sci. Vol. 11. https://doi.org/10.3389/feart.2023.1254309
7. Frederick J. M., Buffett B.A. (2016) Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf. J. Geophys. Res. Solid Earth. 121. P. 1383–1404. https://doi.org/10.1002/2015JB012627.
8. Frederick J.M., Buffett B.A. (2015) Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. Journal of Geophysical Research: Earth Surface. 120(3). https://doi.org/10.1002/2014JF003349
9. Grob H., Riedel M., Duchesne M. J. et al. (2023) Revealing the extent of submarine permafrost and gas hydrates in the Canadian Arctic Beaufort Sea using seismic reflection indicators. Geochemistry, Geophysics, Geosystems. 24. e2023GC010884. https://doi.org/10.1029/2023GC010884
10. Gwiazda R., Paull C.K., Dallimore S.R. et al. (2018) Freshwater seepage into sediments of the shelf, shelf edge, and continental slope of the Canadian Beaufort Sea. Geochemistry, Geophysics, Geosystems. Vol. 19. P. 3039–3055. https://doi.org/10.1029/2018GC007623
11. Hant J. (1982) Geohimija i geologija nefti i gaza. M.: MIR. 706 s. (in Russ.)
12. Kohan A.V., Moroz E.A., Eremenko E.A. i dr. (2022) Morfologija pingopodobnyh form na shel'fah morej Pechorskogo i Karskogo kak indikator ih vozrasta i dinamiki. V sb.: Rel'ef i chetvertichnye obrazovanija Arktiki, Subarktiki i Severo-Zapada Rossii. Vyp. 9. SPb: VNIIOkeangeologija im I.S. Gramberga. S. 143–148. https://doi.org/10.24412/2687-1092-2022-9-143-148. (in Russ.)
13. Kokhan A.V., Moroz E.A., Eremenko E.A. et al. (2023) Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas. Lomonosov Geography Journal. Vol. 78. No. 3. S. 104–124. https://doi.org/10.55959/MSU0579-9414.5.78.3.9. (in Russ.)
14. Krapivner R.B. (2007) Priznaki neotektonicheskoj aktivnosti Barencevomorskogo shel'fa. Geotektonika. № 2. S. 73-89. (in Russ.)
15. Mel'nikov V.P., Fedorov K.M., Vol'f A.A., Spesivcev V.I. (1998) Analiz vozmozhnogo scenarija obrazovanija pridonnyh ledjanyh bugrov na shel'fe Pechorskogo morja. Kriosfera Zemli. T. 11. № 4. S. 51-57. (in Russ.)
16. Mel'nikov V.P., Spesivcev V.I. (1995) Inzhenerno-geologicheskie i geokriologicheskie uslovija shel'fa Barenceva i Karskogo morej. Novosibirsk: Nauka. Sib. izd. Firma. 194 s. (in Russ.)
17. Metodicheskoe rukovodstvo po sostavleniju i podgotovke k izdaniju listov gosudarstvennoj geologicheskoj karty Rossijskoj Federacii masshtaba 1:1 000 000 (tret'ego pokolenija) (2009). SPb. 198 s. (in Russ.)
18. Mironyuk S.G. (2020) Fljuidogennye obrazovanija: obosnovanie vydelenija novoj geneticheskoj gruppy rel'efa morskogo dna. V sb.: VIII Shhukinskie chtenija: rel'ef i prirodopol'zovanie. Materialy Vserossijskoj konferencii s mezhdunarodnym uchastiem. M. S. 37-43. (in Russ.)
19. Mironyuk S.G., Ivanova A.A., Khlebnikova O.A. (2019a) Fljuidogennye formy rel'efa kak indikatory neftegazonosnosti nedr shel'fa. V sb.: Trudy VII Mezhdunarodnoj nauchno-prakticheskoj konferencii “Morskie issledovanija i obrazovanie (MARESEDU-2018)”. T. II (IV). Tver': OOO “PoliPRESS”. S. 120–125. (in Russ.)
20. Mironyuk S.G., Kolyubakin A.A., Golenok O.A. i dr. (2019b) Grjazevulkanicheskie struktury (vulkanoidy) Karskogo morja: morfologicheskie osobennosti i stroenie. V sb.: Geologija morej i okeanov: Materialy XXIII Mezhdunarodnoj nauchnoj konferencii (Shkoly) po morskoj geologii. M.: IO RAN. T. 5. S. 192-196. (in Russ.)
21. Overduin P., Von Deimling T.S., Miesner F. et al. (2019) Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research: Oceans. Vol. 124. https://doi.org/10.1029/2018JC014675
22. Paull C.K., Dallimore S.R., Jin Y.K. et al. (2022) Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. PNAS. Vol. 119. No. 12. https://doi.org/10.1073/pnas.2119105119
23. Paull C.K., Lii W.U., Dallimore S.R. et al. (2007) Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geoph. Res. Lett. Vol. 34. L01603. https://doi.org/10.1029/2006GL027977.
24. Poley D.F. (1982) A detailed study of a submerged pingo-like feature in the Canadian Beaufort Sea (Arctic, Canada). Dalhousie University, Department of Geology. 105 p.
25. Portnov A., Smith A.J., Mienert J. et al. (2013) Offshore permafrost decay and massive seabed methane escape in water depths >20m at the South Kara Sea shelf. Geoph. Res. Lett. Vol. 40. https://doi.org/10.1002/grl.50735
26. Rokos S.I. (1996) Stratigrafija i geohronologija chetvertichnyh otlozhenij melkovodnogo shel'fa Pechorskogo i Karskogo morej po dannym inzhenerno-geologicheskogo burenija. V sb.: Tezisy mezhdunar. Konf. Jevoljucija biologicheskih processov i morskie jekosistemy v uslovijah okeanicheskogo perigljaciala. Murmansk: MMBI. S. 22-23. (in Russ.)
27. Serov P., Portnov A., Mienert J. et al. (2015) Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost. J. Geophys. Res. Earth Surf. Vol. 120. P. 1515–1529. https://doi.org/10.10022015JF003467
28. Shearer J.M., Macnab R.F., Pelletier B.R., Smith T.B. (1971) Submarine pingoes in the Beaufort Sea. Science. Vol. 174. No. 4011. P. 816-818.
29. Sistema Barenceva morja (2021). Pod red. A.P. Lisicyna. M.: GEOS. 671 s. (in Russ.)
30. Van Rensbergen P., Rabaute A., Colpaert A. et al. (2007) Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data. International Journal of Earth Sciences. 96(1):185-197. https://doi.org/10.1007/s00531-005-0021-2
31. Weatherall P., Marks K.M., Jakobsson M. et al. (2015) A new digital bathymetric model of the world’s oceans. Earth and Space Science. Vol. 2. P. 331–345. https://doi.org/10.1002/2015EA000107
Supplementary files
Review
For citations:
Eremenko E.A., Kokhan A.V., Moroz E.A., Denisova A.P., Sokolov S.Yu., Mutovkin A.D. Pingo-like features in the Pechora Sea: conditions, origin and stages of development. Geomorfologiya i Paleogeografiya. 2024;55(2):138-153. (In Russ.) https://doi.org/10.31857/S2949178924020075. EDN: PNPYQE