Preview

Geomorfologiya i Paleogeografiya

Advanced search

Study of morpholithodynamics and modeling of coastal processes on Iturup Island (Kuril Islands)

https://doi.org/10.31857/S2949178925020062

EDN: GPYBCL

Abstract

Sediment redistribution on the beach and offshore slope are the main processes forming the accumulating marine terraces of Iturup Island. The intensity of these processes is controlled by tectonic and seismic activity associated with Kuril-Kamchatka subduction zone. The long-term changes of the island ground level are due to vertical tectonic movement, while the short-term changes are associated with seismicity. Studies of morpholithodynamic processes in the coastal zone on the island of Iturup were carried out using the methods of paleoseismology, geomorphological analysis, and computer modeling. Based on previously collected data, analysis of topographic maps and satellite imagery, and field measurements on Iturup Island in 2022–2023, digital maps and digital elevation models (DEMs) of the coastal zone of the Kuril Bay were constructed. Four buried scarps were discovered within the beach ridge sediments on the accumulative marine terrace, indicating vertical coseismic subsidence that periodically occurs on the Sea of Okhotsk coast of Iturup. Based on tephra from the Tarumae volcano, the approximate age of the young beach ridges has been established (about 280 years). Applied 3D modeling predicted the flooding of the territory at different sea levels. Coastal profile of equilibrium developed from the DEM using the Dean model indicated that the modern marine terrace is stable. The SBEACH software was used to simulated storm surges and storm frequencies at different sea level scenarios. It was concluded that the erosion of the accumulative marine terrace, where the city of Kurilsk is located is possible either by catastrophic storms of rare recurrence, or after abrupt coseismic subsidence of the coast, which can occur during a strong earthquake in the area of the southern segment of the Kuril-Kamchatka subduction zone.

About the Authors

А. L. Khomchanovsky
Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky
Russian Federation


F. I. Batanov
Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky
Russian Federation


T. K. Pinegina
Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky
Russian Federation


O. R. Khubaeva
Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky
Russian Federation


References

1. Atlas Kuril’skikh ostrovov (Atlas of the Kuril Islands). (2009). M.–Vladivostok: IPTS “DIK” (Publ.). 516 p. (in Russ.)

2. Afanas’yev V.V. (2020) Morfolitodinamicheskie processy i razvitie beregov kontaktnoj zony subarkticheskih i umerennyh morej Severnoj Pacifiki (Morpholithodynamic processes and coastal development of the contact zone of the subarctic and temperate seas of the North Pacific). Yuzhno-Sakhalinsk: IMGG FEB RAS (Publ.). 233 p. (in Russ.)

3. Bloh Ju. I. et al. (2022) Submarine volcanoes of the Okhotomorsky slope of Iturup Island (Kuril Island Arc). In: Materialy konferencii “Voprosy teorii i praktiki geologicheskoj interpretacii gravitacionnyh, magnitnyh i jelektricheskih polej”. P. 31-34. (in Russ.)

4. Granin, N. G. et al. (2014) Generation of Lake Baikal level oscillations by remote strong earthquakes. Doklady Earth Sciences. Vol. 455. No. 1. Springer Nature BV. P. 224. https://doi.org/10.7868/S0869565214080180

5. Dunayev N.N., Leontiev I.O., Repkina T.Y. (2020) Morphodynamics of the shore composed of pyroclastic material (on the example of Iturup Island of the Kuril Archipelago). In : Trudy IX Mezhdunarodnoj nauchno-prakticheskoj konferencii “Morskie issledovanija i obrazovanie (MARESEDU-2020)”. P. 67-70. (in Russ.)

6. Zenkovich V.P. (1962) Osnovy ucheniya o razvitii morskih beregov (Fundamentals of the doctrine of the development of sea coasts). Moscow: USSR Academy of Sciences (Publ). 710 p. (in Russ.)

7. Ignatov E. I. (2004) Beregovye morfosistemy (Coastal morphosystems). Moskva-Smolensk: Madzhenta (Publ). 352 p. (in Russ.)

8. Kaplin P.A i dr. (1991) Berega (Coasts). M.: Mysl (Publ.). 480 p. (in Russ.)

9. Kostyanitsyn M.N., Logachev L.A., Zenkovich V.P. (Eds.). (1975) Rukovodstvo po metodam issledovanij i raschetov peremeshhenija nasosov i dinamiki beregov pri inzhenernyh izyskanijah (Manual on research methods and calculations of material movement and coastal dynamics in engineering surveys). Hydrometeoizdat. Moscow department (Publ.) 238 p. (in Russ.)

10. Kuznetsov M. A. (2021) Berega ostrova Iturup: morfologiya, dinamika, prognoz razvitiya (Coasts of Iturup Island: morphology, dynamics, forecast). Geomorfologiya. T. 52. No. 1. P. 51-60. https://doi.org/10.31857/S0435428121010089

11. Leontiev I.O. et al. (2009) Software products for mathematical modeling and forecasting of coastal processes of wave nature (Programmnye produkty dlya matematicheskogo modelirovaniya i prognozirovaniya beregovyh processov volnovoi prirody) In : Trudy Mezhdunarodnoj konferencii “Sozdanie iskusstvennykh plyazhei, ostrovov i drugih sooruzhenii v beregovoi zone morei, ozer i vodohranilishch”. Novosibirsk: House of the Siberian Branch of RAS (Publ.). P. 24-31 (in Russ.)

12. Melekestsev I.V. et al. (1974) Kamchatka. Kuril'skie i Komandorskie ostrova (Kamchatka. Kuril and Commander Islands). Moscow: Nauka (Publ.). 437 p. (in Russ.)

13. Nosov, M. A. et al. (2019) The role of Coriolis force in the dynamics of waves excited in the ocean by deep-focus earthquakes. Computational Techniques. Т. 24. No. 1. P. 73-85. https://doi.org/10.25743/ICT.2019.24.1.006

14. Nosov M.A. et al. (2018) Vliyanie vrashcheniya Zemli na volny tsunami, vyzvannye glubokofokusnym Ohotomorskim zemletryaseniem 2013 g (Influence of the Earth's rotation on tsunami waves generated by the 2013 deep-focus Okhotomorsk earthquake). Moscow University Physics Bulletin. No. 6. P. 117-123. (in Russ.)

15. Pinegina T. K. et al. (2023) Po sledam golocenovykh sil'nykh zemletryasenii ostrova Iturup (On the traces of Holocene strong earthquakes of Iturup Island) Priroda. No. 3 (1291). P. 51-57. https://doi.org/10.7868/S0032874X23030055 (in Russ.)

16. Pinegina T.K., Kozhurin A.I. (2023) Coseismic and tectonic time-scale deformations of an island arc based on studies of east coast of Kamchatka Peninsula (Far East, Russia). Geotectonics. No. 6. P. 1-14. https://doi.org/10.31857/S0016853X23060061

17. Pchelkin V.I. et al. (1986) Report on the search for thermal waters in the central part of Iturup Island. Iturup (report of the Iturupskaya GGP for 1977-86) Yuzhno-Sakhalinsk. SGGE PGO “Sakhalingeologiya”. 1496 p. (in Russ.)

18. Russian Tsunami Warning System (RTWS) [Electronic data]. Access way: https://rtws.ru/ (access date: 05.12.2023).

19. Safyanov G.A. (1996) Geomorfologija morskih beregov (Coastal geomorphology). 400 p. (in Russ.)

20. Solovyov S.L., Goh J.N., Kim H.S. (1986) Katalog tsunami v Tikhom okeane (Catalog of tsunamis in the Pacific, 1969-1982). M. MGK AN SSSR. 163 p. (in Russ.)

21. Khabidov A. Sh. et al. (2012) Reaktsiya beregov krupnykh vodokhranilishch na kolebaniya urovnya vody: klassicheskie i neklassicheskie scenario (Response of large reservoir shores to water level fluctuations: classical and non-classical scenarios). Geomorfologiya. No. 3. P. 61-68 (in Russ.)

22. Shevchenko G.V. (2015) Estimation of tsunami heights of rare recurrence taking into account the probability of imposition on the tide or surge for the coast of the Russian Far East. In: Problemy kompleksnogo geofizicheskogo monitoringa Dal'nego Vostoka Rossii. P. 383-388 (in Russ.)

23. Shuiskii Yu.D. (2018) Istoriya razvitiya i metodologiya beregovedeniya (History of development and methodology of coastal science). Odessa: Astroprint (Publ.). 448 p. (in Russ.)

24. Yachmenev V.E., Khuzeeva M.O. (2017) Repeatability of storm surge on the Southern Kuril Islands based on visual observations and instrumental measurements. Vestnik Dal'nevostochnogo otdelenija Rossijskoj akademii nauk. No. 1(191). P. 121-127 (in Russ.)

25. Aedo D. et al. (2023) Decadal coastal evolution spanning the 2010 Maule earthquake at Isla Santa Maria, Chile: Framing Darwin's accounts of uplift over a seismic cycle. Earth Surface Processes and Landforms. Т. 48. № 12. P. 2319-2333. https://doi.org/10.1002/esp.5615

26. Atwater B.F. et al. (1995) Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake Spectra. V. 11. № 1. P. 1-18. https://doi.org/10.1193/1.1585800

27. Atwater B.F., Hemphill-Haley E. (1997) Recurrence Intervals for Great Earthquakes of the Past 3500 Years at Northeastern Willapa Bay. Washington. U.S. Geological Survey Professional Paper. № 1576. P. 109

28. Bondevik S., Gjevik B., Sørensen M. B. (2013) Norwegian seiches from the giant 2011 Tohoku earthquake. Geophysical Research Letters. Т. 40. № 13. P. 3374-3378. https://doi.org.10.1002/grl.50639

29. Bruun P. (1988) The Bruun rule of erosion by sea-level rise: a discussion on large-scale two- and three-dimensional usage. Journal of Coastal Research. V. 4. № 4. P. 627−648

30. Canitano A., Bernard P., Allgeyer S. (2017) Observation and modeling of the seismic seiches triggered in the Gulf of Corinth (Greece) by the 2011 Mw 9.0 Tohoku earthquake. Journal of Geodynamics. Т. 109. P. 24-31. https://doi.org/10.1016/j.jog.2017.06.001

31. Dean R.G., Maurmeyer E.M. (1983) Models for Beach Profile Response. CRC Handbook of Coastal Processes and Erosion. P.D. Komar ed. Boca Raton, Fl.: Coastal Research Center Press. 305 p.

32. Dean R.G. Beach nourishment. Theory and practice. – World Scientific, 2002. – 398 p.

33. Hanson H., Kraus N.C. (1989) GENESIS: Generalized model for simulating shoreline change. Tech. Report CERC-89-19. Coastal Engineering Research Center. US Army Corps of Engineers. 247 p.

34. Iwaki M., Toda T. (2022) Seismic seiche-related oscillations in Lake Biwa, Japan, after the 2011 Tohoku earthquake. Scientific Reports. Т. 12. № 1. P. 19357. https://doi.org/10.1038/s41598-022-23939-7

35. Larson M., Kraus N. C., Byrnes M. R. (1990) SBEACH: numerical model for simulating storm-induced beach change. Report 2. Numerical formulation and model tests. – 1990. 115 p.

36. National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. [Электронный ресурс]. URL: https://www.ngdc.noaa.gov/hazard/tsu.shtml (дата обращения: 05.12.2023).

37. Okada Y. (1985) Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America. Т. 75. №. 4. P. 1135-1154.

38. Peterson C.D., Doyle D.L., Barnett E.T. (2000) Coastal flooding and beach retreat from coseismic subsidence in the central Cascadia margin, USA. Environ. Eng. Geosci. 6 (3). P. 255-269. https://doi.org/10.2113/gseegeosci.6.3.255

39. Pinegina T.K. et al. (2020) Coseismic coastal subsidence associated with unusually wide rupture of prehistoric earthquakes on the Kamchatka subduction zone: A record in buried erosional scarps and tsunami deposits. Quaternary Science Reviews. V. 233. 106171. https://doi.org/10.1016/j.quascirev.2020.106171

40. Satake K., Nanayama F., Yamaki S. (2008) Fault models of unusual tsunami in the 17th century along the Kuril trench. Earth, planets and space. Т. 60. P. 925-935. https://doi.org/10.1186/BF03352848

41. Suzuki T. (2012) Seismic seiche occurred at Lake Saiko due to the 2011 off the Pacific Coast of Tohoku earthquake. Proc. Jpn. Soc. Civil Eng. A. Т. 1. C. 68.

42. Tamura T. (2012) Beach ridges and prograded beach deposits as palaeoenvironment records. Earth Sci. Rev. 114 (3-4). P. 279-297. https://doi.org/10.1016/j.earscirev.2012.06.004

43. Tsukanova E. (2022) The Observations of the 2022 Tonga-Hunga Tsunami Waves in the Sea of Japan. Pure and Applied Geophysics. Vol. 179. No. 12. P. 4279-4299. https://doi.org/10.1007/s00024-022-03191-w


Supplementary files

Review

For citations:


Khomchanovsky А.L., Batanov F.I., Pinegina T.K., Khubaeva O.R. Study of morpholithodynamics and modeling of coastal processes on Iturup Island (Kuril Islands). Geomorfologiya i Paleogeografiya. 2025;56(2):262-282. (In Russ.) https://doi.org/10.31857/S2949178925020062. EDN: GPYBCL

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)