Preview

Geomorfologiya i Paleogeografiya

Advanced search

Darhad paleolake and Darhad glacial megafloods in the context of catafluvial events in North Asia in the Late Pleistocene

https://doi.org/10.31857/S2949178924040069

EDN: FGTNSC

Abstract

A set of geomorphological and geochronological studies was carried out aimed at determining the reasons for the formation of the periglacial Darhad paleolake and the age of the Darhad megafloods (glacial superflood). The main landforms and sedimentary strata from the Darhad Basin to the Western Sayan Ridge, formed in the zone of dynamic influence of the glacial superflood, are characterized. Based on analysis, satellite images, digital elevation model, mapping and reconstruction, new data were obtained on the conditions for the formation of the glacier dam in the valley of the Shishkhid-Gol. The confluence of the large glaciers Khara-Baryangiin-Gol and Ikh-Dzhams-Gol below the mouth of the Tengisiin-Gol formed a backwater of the Shishkhid-Gol with a height of 300 m. The presence of ancient coastlines up to an altitude of 1713 m in the immediate vicinity of the newly identified glacial dam indicates its dominant role in the formation of the Darhad paleolake. Within the Darhad Basin, as a result of an analysis of the absolute heights of the highest coastline of the Darhad paleolake, downward tectonic deformations were revealed over the last 18–23 ka with an amplitude of 27 m. As a result of field research and cosmogenic dating (10Be), the first dates were obtained for the exposure of boulders within four fields of gravel dunes, as well as an erratic boulder exposed within a bar in the valley of the Kaa-Khem. The age distribution of 14 samples showed a scatter of dates within the range of 38–18 ka, which have three peaks. Two of them correspond to two megafloods of 38–36 ka and 23–18 ka and one, intermediate, associated with intermittent exposure resulting from the impact of a second megaflood on boulder exposure within gravel dunes.

About the Authors

S. G. Arzhannikov
Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


A. V. Arzhannikova
Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


R. Braucher
rench National Centre for Scientific Research (CNRS), Aix­en­Provence; Centre européen de recherche et d’enseignement de géosciences de l’environnement (CEREGE), Aix­en­Provence
France


References

1. Arzhannikov S.G., Arzhannikova A.V. (2011) The Late Quaternary Geodynamics of the Hyargas Nuur Basin and Bordering Scarps (western Mongolia). Russian Geology and Geophysics. Vol. 52. No. 2. P. 220-229. https://doi.org/10.1016/j.rgg.2010.12.016

2. Arzhannikova A.V., Arzhannikov S.G., Akulova V.V. et al. (2014). The Origin of Sand Deposits in the South Minusa Basin. Russian Geology and Geophysics. Vol. 55. No. 10. P. 1183-1194. https://doi.org/10.1016/j.rgg.2014.09.004

3. Arzhannikov, S.G., Braucher, R., Jolivet, M. et al. (2015) Late Pleistocene glaciations in southern East Sayan and detection of MIS 2 terminal moraines based on beryllium (10Be) dating of glacier complexes. Russian Geology and Geophysics. Vol. 56. No. 11. P. 1509-1521.

4. Arzhannikova A.V., Arzhannikov S.G., Chebotarev A.A. (2024) Morphotectonics and paleoseismology of the North Darhad fault (SW Baikal Rift, Mongolia). Journal of Asian Earth Sciences. Vol. 259. 105882. https://doi.org/10.1016/j.jseaes.2023.105882

5. Baryshnikov G.Ya. (1979) On the issue of the formation of large boulder alluvium of the Biy river. In: Materialy Regional'noj nauchno-prakticheskoj konferencii «Geologiya i poleznye iskopaemye Altajskogo kraya». Barnaul. P. 117–119. (in Russ.)

6. Borisov B.A., Minina E.A. (1982) Features of the formation of ribbed main moraines in mountainous countries and their significance for paleoglaciology. Materials of glaciological studies. No. 44. P. 129-133. (in Russ.)

7. Kotlyakov V.M., Grosswald M.G. (Eds.). (1987) Vzaimodejstvie oledeneniya s atmosferoj i okeanom. Interaction of glaciation with the atmosphere and ocean. M.: Nauka (Publ.). 250 p. (in Russ.)

8. Grosswald M.G., Rudoy A.N. (1996) Quaternary glacial-dammed lakes in the Siberian Mountains. News of the Academy of Sciences. Geographical series. No. 6. P. 112-126. (in Russ.)

9. Zolnikov I.D., Mistryukov A.A. (2008) Chetvertichnye otlozheniya i rel'ef dolin Chui i Katuni. Quaternary sediments and relief of the Chuya and Katun valleys. Novosibirsk: Parallel. 180 c.

10. Zolnikov I.D., Deev E.V. (2013) Glacial superfloods on the territory of the Altai Mountains in the Quaternary period: formation conditions and geological features. Earth's cryosphere. T. 17. No. 4. P. 74-82.

11. Zolnikov I.D., Novikov I.S., Deev E.V., Shpanskii A.V., Mikharevich M.V. (2021) Facies composition and stratigraphic position of the quaternary Upper Yenisei sequence in the Tuva and Minusa depression. Geologiya i geofizika. Vol. 62. No. 10. P. 137–139. (In Russ.).

12. Parnachev S.G. (1999) Geologiya vysokih altajskih terras (Yalomano-Katunskaya zona). Geology of high Altai terraces (Yalomano-Katun zone). Tomsk Publishing house IAP TPU. 137 p. (in Russ.)

13. Perepelov A.B., Kuzmin M.I., Tsypukova S.S. et al. (2017) Eclogite trace in evolution of late Cenozoic alkaline basalt volcanism on the southwestern flank of the Baikal Rift Zone: geochemical features and geodynamic consequences. Doklady Akademii Nauk. Vol. 476. Part 2. P. 1187–1192.

14. Rudoy A.N. (1984) The giant current ripples are proof of the catastrophic outbursts of the glacial lakes of the Altay Mountains. In: Modern geomorphological processes in the territory of the Altay. Biysk. P. 60-64. (in Russ.)

15. Logachev N.A. (Eds.). (1993) Sejsmotektonika i sejsmichnost' Prihubsugul'ya (Seismotectonics and seismicity of the Khubsugul region). Novosibirsk: Nauka (Publ.). 182 p. (in Russ.)

16. Selivanov E.I. (1968) Drained lakes. Nature. No. 3. P. 81-82. (in Russ.)

17. Selivanov E.I. (1967) Neogene-Quaternary giant lakes in Transbaikalia and Northern Mongolia. DAN. Vol. 177. No. 1. P. 175-178. (in Russ.)

18. Spirkin A.I. (1970) On the ancient lakes of the Darkhad Basin // Geology of the Mesozoic and Cenozoic of Western Mongolia / Ed. E.V. Devyatkina. M.: Science. P. 143-150. (in Russ.)

19. Sugorakova A.M., Yarmolyuk V.V., Lebedev V.I. (2003) Kajnozojskij vulkanizm Tuvy (Cenozoic volcanism of Tuva). Kyzyl: TuviKOPR SB RAS. 92 p. (In Russ.)

20. Uflyand A.K., Ilyin A.V., Spirkin A.I. (1969) Baikal-type depressions in Northern Mongolia. MOIP Bulletin. Geological department. Vol. 44. No. 6. P. 5-22. (in Russ.)

21. Uflyand A.K., Ilyin A.V., Spirkin A.I. et al. (1971) Main features of stratigraphy and conditions for the formation of Cenozoic formations in the Kosogol region (MPR). MOIP Bulletin. Geological department. Vol. 46. No. 1. P. 54-69. (in Russ.)

22. Tsypukova S.S., Perepelov A.B., Demonterova E.I. et al. (2022) Two stages of the cenozoic alkaline-basalt volcanism in the Darkhad depression (Northern Mongolia) – geochronology, geochemistry, and geodynamic consequences. Geodynamics and Tectonophysics. Vol. 13. No. 3. P. 1-15. (In Russ.) https://doi.org/10.5800/GT-2022-13-3-0613

23. Arzhannikov S.G., Braucher R., Jolivet M. et al. (2012) History of late Pleistocene glaciations in the central Sayan-Tuva Upland (southern Siberia). Quaternary Science Reviews. No. 49. P. 16-32. https://doi.org/10.1016/j.quascirev.2012.06.005

24. Arzhannikov S., Arzhannikova A., Braucher R. (2023) Darhad megaflood (southern Siberia): Сause, age and consequence. Quaternary International. No. 643. P. 1-21. https://doi.org/10.1016/j.quaint.2022.10.002

25. Batbaatar J., Gillespie A.R. (2016) Outburst floods of the Maly Yenisei. Part I. International Geology Review. No. 14. P. 1723-1752. https://doi.org/10.1080/00206814.2015.1114908

26. Batbaatar J., Gillespie A.R., (2016) Outburst floods of the Maly Yenisei. Part II – new age constraints from Darhad basin. International Geology Review. No. 14. P. 1753-1779. https://doi.org/10.1080/00206814.2016.1193452

27. Bacon S.N., Bayasgalan A., Gillespie A.R. et al. (2003) Paleoseismic displacement measurements from landforms subjected to periglacial processes: observations along the Jarai Gol fault near the Tamyn Am Hills, Darhad Depression, northern Mongolia. XVI Inqua Congress, Abstract with Programs. P. 103.

28. Baker V.R. (1973) Paleohydrology and sedimentology of Lake Missoula flooding in Eastern Washington. Geological Society of America. Special Paper. No. 144. P. 1-79. https://doi.org/10.1130/SPE144-p1

29. Baker V.R., Bunker R.C. (1985) Cataclysmic late Pleistocene flooding from Glacial Lake Missoula: a review. Quaternary Science Review. No. 4. P 1-41.

30. https://doi.org/10.1016/0277-3791(85)90027-7

31. Baker V.R., Benito G., Rudoy A.N. (1993) Paleohydrology of Late Pleistocene superflooding, Altay Mountains, Siberia. Science. No. 259. P. 348–350.

32. Benito G., Thorndycraft V. (2020) Catastrophic glacial lake outburst flooding of the Patagonian Ice Sheet. Earth-Science Reviews. No. 200. 102996.

33. https://doi.org/10.1016/j.earscirev.2019.102996

34. Martini I.P., Baker V.R., Garzon G. (Eds.). (2002) Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. International Association of Sedimentologists Special Publication. Vol. 32. Blackwell Science. London. 320 p.

35. Chmeleff J., von Blanckenburg F., Kossert K. et al. (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res., Sect. B 268. P. 192-199. https://doi.org/10.1016/j.nimb.2009.09.012

36. Clark P., Marshall S., Clarke G. (2001) Freshwater Forcing of Abrupt Climate Change During the Last Glaciation. Science. Vol 293. No. 5528. P. 283-287.

37. https://www.science.org/doi/epdf/10.1126/science.1062517

38. Clarke G., Leverington D., Teller J. et al. (2004) Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quaternary Science Reviews. Vol. 23. No. 3-4. P. 389-407. https://doi.org/10.1016/j.quascirev.2003.06.004

39. Gillespie A.R., Burke R.M., Komatsu G. et al. (2008) Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quaternary Research. No. 69. P. 169-187.

40. https://doi.org/10.1016/j.yqres.2008.01.001

41. Gosse John C., Phillips Fred M. (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Review. No. 20. P. 1475-1560. https://doi.org/10.1016/S0277-3791(00)00171-2

42. Kleiven H., Kissel C., Laj C. et al. (2008) Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Freshwater Outburst. Science. Vol. 319. No. 5859. P. 60-64.

43. https://www.science.org/doi/10.1126/science.1148924

44. Komatsu G., Arzhannikov S.G., Gillespie A. et al. (2009) Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology. No. 104. P. 143–164. https://doi.org/10.1016/j.geomorph.2008.08.009

45. Komatsu G., Baker V., Arzhannikov S. (2016) Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia. International Geology Review. No. 58. P. 1693-1722. https://doi.org/10.1080/00206814.2015.1048314

46. Korschinek G., Bergmaier A., Faestermann T. (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B 268. P. 187-191. https://doi.org/10.1016/j.nimb.2009.09.020

47. Krivonogov S.K., Sheinkman V.S., Mistryukov A.A. (2005) Stages in the development of the Darhad dammed lake (Northern Mongolia) during the Late Pleistocene and Holocene. Quaternary International. No. 136. P. 83-94. https://doi.org/10.1016/j.quaint.2004.11.010

48. Krivonogov, S.K., Yi, S., Kashiwaya, K., Kim, J.C. (2012) Solved and unsolved problems of sedimentation, glaciation and palaeolakes of the Darhad Basin, Northern Mongolia. Quaternary Science Reviews No. 56. P. 142–163. https://doi.org/10.1016/j.quascirev.2012.08.013

49. Margold M., Jannson K., Stroeven A. et al. (2011) Glacial Lake Vitim, a 3000-km3 outburst flood from Siberia to the Arctic Ocean. Quaternary Research. No. 76. P. 393-396. https://doi.org/10.1016/j.yqres.2011.06.009

50. Margold M., Jansen J., Codilean A. et al. (2018) Repeated megafloods from Lake Vitim, Siberia, to the Arctic Jcean over the past 60000 years. Quaternary Science Reviews. No.187. P. 41-61. https://doi.org/10.1016/j.quascirev.2018.03.005

51. Norris S. L., Garcia-Castellanos D., Jansen J. D. et al. (2021) Catastrophic drainage from the northwestern outlet of glacial Lake Agassiz during the Younger Dryas. Geophysical Research Letters. No. 48. e2021GL093919. https://doi.org/10.1029/2021GL093919

52. O’Connor J.E., Costa J.E. (2004) The world’s largest floods, Past and Present: Their causes and magnitudes. U.S. Geological Survey Circular 1254: Reston. VA. U.S. Geological Survey. 13 p.

53. Rudoy A.N., Baker V.R. (1993) Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia. Sedimentary Geology. No. 85. P. 53-62.https://doi.org/10.1016/0037-0738(93)90075-G

54. Rudoy A.N. (2002) Glacier-dammed lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quaternary International. Vol. 87. No. 1. P. 119-140. https://doi.org/10.1016/S1040-6182(01)00066-0

55. Stolz C., Hülle D., Hilgers A. et al. (2012) Reconstructing fluvial, lacustrine and aeolian process dynamics in Western Mongolia. Zeitschrift für Geomorphologie. Vol. 56. No. 3. P. 267–300. DOI: 10.1127/0372-8854/2012/0078

56. Stone J.O. (2000) Air pressure and cosmogenic isotope production. Journal of Geophysical Research. Vol. 105. No. B10. P. 23753-23759. https://doi.org/10.1029/2000JB900181

57. Wagner G.A. (1998) Age determination of young rock and artifacts. Springer. 466 p.


Supplementary files

Review

For citations:


Arzhannikov S.G., Arzhannikova A.V., Braucher R. Darhad paleolake and Darhad glacial megafloods in the context of catafluvial events in North Asia in the Late Pleistocene. Geomorfologiya i Paleogeografiya. 2024;55(4):78-110. (In Russ.) https://doi.org/10.31857/S2949178924040069. EDN: FGTNSC

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)