Dynamics of erosion and sediment supply in near-pristine lowland catchments of Central Siberia due to land use changes and forest fires
https://doi.org/10.31857/S2949178925020043
EDN: GPTLUQ
Abstract
The article examines a quantitative assessment of basin erosion and suspended sediment yield in poorly developed catchments within the Lena River basin. The first catchment (15 740 km2) is located in the middle reaches of the Lena River near the city of Yakutsk. The second catchment (1709 km2) is located in the headward portion of the Bolshaya Cherepanikha River basin. The assessment was carried out using the erosion-accumulation model WaTEM/SEDEM, as well as a modified model developed by the State Hydrology Institute (SHI) applied to the forested catchments of the river basin. The amount of soil lost to erosion and suspended sediment yield were obtained for each catchment. The long-term average value of eroded soil within the catchment area near Yakutsk increased from 4.7 (2003–2007) to 4.9 (2015–2019) t/km2 per year most likely due to replacement of tree coverage with meadows in the areas effected by wild fires; and decreased from 7.2 (1985–1990) to 6.4 (2015–2019) t/km2 per year within the Bolshaya Cherepanikha River catchment likely due to expansion of tree coverage, decrease of meadows, and disappearance of cropland. To verify the models, the modeling results were compared with measured suspended sediment yield at gauging station. It was established that the observed value of sediment yield according to data from the Bom gauging station located within Bolshaya Cherepanikha River catchment also decreased during two studied periods from 0.41 to 0.37 t/km2 per year. The decline is explained by a decrease in the intensity of agricultural activity in the catchment, as well as an increase in the area covered by forest and a decrease in meadows. Sediment yield trends within the catchment area near the city of Yakutsk and the Lena River were also compared with each other. Thus, the measured value of suspended sediment yield in Lena at the Tabaga gauging station was characterized by an increasing trend from 8.76 to 10.82 t/km2 per year over the same periods. The results showed a significant contribution of basin erosion to sediment yield in smaller rivers (Bolshaya Cherepanikha River), while in the large rivers, like Lena River still remains very small.
Keywords
About the Authors
K. A. MaltsevRussian Federation
S. R. Chalov
Russian Federation
M. A. Ivanov
Russian Federation
T. S. Maltseva
Russian Federation
E. A. Fingert
Russian Federation
E. V. Petrova
Russian Federation
References
1. Arnold J., Moriasi D., Gassman P. et al. (2012) SWAT: Model use, calibration, and validation. Transactions of the ASABE. Vol. 55. No. 4. P. 1491-1508. https://doi.org/10.13031/2013.42256
2. Baartman J.E.M., Masselink R., Keesstra S.D. et al. (2013) Linking landscape morphological complexity and sediment connectivity // Earth Surf. Process. Landforms. No. 38. P. 1457-1471. https://doi.org/10.1002/esp.3434
3. Bhattarai R., Dutta D. (2008) A comparative analysis of sediment yield simulation by empirical and process-oriented models in Thailand / Une analyse comparative de simulations de l’exportation sédimentaire en Thaïlande à l’aide de modèles empiriques et de processus. Hydrological Sciences Journal. Vol. 53. No. 6. P. 1253–1269. https://doi.org/10.1623/hysj.53.6.1253
4. Boomer K.B., Weller D.E., Jordan T.E. (2008) Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake bay catchments. J. environ. qual. Vol. 37. No. 1. P. 79–89. https://doi.org/10.2134/jeq2007.0094
5. Borrelli P., Alewell C., Alvarez P. et al.(2021) Soil erosion modelling: A global review and statistical analysis. Science of The Total Environment. Vol. 780. P. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
6. Borrelli P., Robinson D.A., Fleischer L.R. et al. (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. Vol. 8. No. 1. https://doi.org/10.1038/s41467-017-02142-7
7. Borselli L., Cassi P., Torri D. (2008) Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA. Vol. 75. No. 3. P. 268–277. https://doi.org/10.1016/j.catena.2008.07.006
8. Buryak Zh.A., Narozhnyaya A.G., Marinina O.A. (2023) Erosion risk of arable land in the Belgorod oblast. Regional'nyye geosistemy. Vol. 47. No 1. P. 101–115. (in Russ.) https://doi.org/10.52575/2712-7443-2023-47-1-101-115
9. Chalov S., Prokopeva K., Habel M. (2021) North to south variations in the suspended sediment transport budget within large siberian river deltas revealed by remote sensing data. Remote Sensing. Vol. 13. No. 22. P. 4549. https://doi.org/10.3390/rs13224549.
10. Cohen S., Kettner A.J., Syvitski J.P.M. et al. (2013) WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation. Computers & Geosciences. 2013. Vol. 53. P. 80–93. https://doi.org/10.1016/j.cageo.2011.08.011
11. de Vente J., Poesen J., Verstraeten G.. et al. (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global and Planetary Change. Vol. 60. No. 3–4. P. 393–415. https://doi.org/10.1016/j.gloplacha.2007.05.002
12. Ermolaev O.P., Maltsev K.A. (2008) Erosion risk assessment for soil coverage of forest and forest-steppe landscapes of the middle Volga using GIS-technologies. Uchenyye zapiski Kazanskogo universiteta. Seriya Yestestvennyye nauki. Vol. 4. No 150. P. 85–98. (in Russ.)
13. Ermolaev O.P., Mal'tsev K.A., Mukharamova S.S. et al. (2017) Cartographic model of river basins of European Russia. Geography and natural resources. No. 2. P. 131-138. https://doi.org/10.1134/S1875372817020032
14. Farr T.G., Rosen P.A., Caro E. et al. (2007) The shuttle radar topography mission. Rev. Geophys. Vol. 45. No. 2. P. RG2004. https://doi.org/10.1029/2005RG000183
15. Ferro V., Porto P. (2000) Sediment delivery distributed (SEDD) Model. J. Hydrol. Eng. Vol. 5. No. 4. P. 411–422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
16. Gay A., Cerdan O., Mardhel V. et al. (2016) Application of an index of sediment connectivity in a lowland area. J Soils Sediments. Vol. 16. No. 1. P. 280–293. https://doi.org/10.1007/s11368-015-1235-y
17. Golosov V., Yermolaev O., Litvin L. et al. (2018) Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degrad Dev. Vol. 29. No. 8. P. 2658–2667. https://doi.org/10.1002/ldr.3061
18. Golosov V.N., Zhidkin A.P., Petel’ko A.I. et al. (2022) Field verification of erosion models based on the studies of a small catchment in the Vorobzha river basin (Kursk oblast, RUSSIA). Eurasian Soil Science. Vol. 55. No. P. 1508-1523. https://doi.org/10.1134/s1064229322100040
19. Grigoriev A.A. (2011) Formirovaniye drevostoyev listvennitsy i berezy v vysokogor'yakh Pripolyarnogo Urala v usloviyakh sovremennogo izmeneniya klimata (Formation of larch and birch stands in the highlands of the Subpolar Urals under conditions of modern climate change). PhD thesis. Ekaterinburg: Ural State Forestry University. 23 p. (in Russ.)
20. Grum B., Woldearegay K., Hessel R. et al.(2017) Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM). CATENA. Vol. 159. P. 20–34. https://doi.org/10.1016/j.catena.2017.07.018
21. Hansen M.C., Potapov P.V., Moore R. et al. (2013) High-resolution global maps of 21st-century forest cover change. Science. Vol. 342. No. 6160. P. 850–853. https://doi.org/10.1126/science.1244693
22. Hansen M.C., Potapov P.V., Pickens A.H, et al. (2022) Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. Vol. 17. No. 3. P. 034050. https://doi.org/10.1088/1748-9326/ac46ec
23. Hartmann J., Moosdorf N. (2012) The new global lithological map database GLiM: A representation of rock properties at the Earth surface: TECHNICAL BRIEF. Geochem. Geophys. Geosyst. Vol. 13. No. 12. https://doi.org/10.1029/2012GC004370
24. Heckmann T., Cavalli M., Cerdan O. et al. (2018) Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews. Vol. 187. P. 77–108. https://doi.org/10.1016/j.earscirev.2018.08.004.
25. Hengl T., Mendes de Jesus J., Heuvelink G.B.M. et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. Vol. 12. No. 2. P. e0169748. https://doi.org/10.1371/journal.pone.0169748
26. Jumps N., Gray A.B., Guilinger J.J. (2022) Wildfire impacts on the persistent suspended sediment dynamics of the Ventura River, California. Journal of Hydrology: Regional Studies. Vol. 41. P. 101096. https://doi.org/10.1016/j.ejrh.2022.101096
27. Krasnoshchekov Y.N. (2018) Soils of mountainous forests and their transformation under the impact of fires in Baikal region. Eurasian Soil Science. 2018. Vol. 51. No. 4. P. 371-384.
28. https://doi.org/10.7868/S0032180X18040019
29. Kumar P.S., Praveen T.V., Prasad M.A. (2015) Simulation of Sediment Yield Over Un-gauged Stations Using MUSLE and Fuzzy Model. Aquatic Procedia. Vol. 4. P. 1291–1298. https://doi.org/10.1016/j.aqpro.2015.02.168.
30. Lappalainen H.K., Kerminen V., Petäjä T. et al. (2016). Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmos. Chem. Phys. Vol. 16. No. 22. P. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016
31. Larionov G.A. (1993) Eroziya i deflyatsiya pochv (Izdatel'stvo MGUSoil erosion and deflation). Moscow: MSU. 200 p.(in Russ.)
32. Litvin L.F., Kiryukhina Z.P., Krasnov S.F. et al. (2021) Dynamics of agricultural soil erosion in Siberia and Far East. Eurasian Soil Science. Vol. 54. No 1. P. 150-160. https://doi.org/10.31857/S0032180X2101007X
33. Magritsky D.V. (2022) New data on the distribution of water flow rates in the North-East of Russia and the influx of river waters into the Arctic seas. Vodnoye khozyaystvo Rossii: problemy, tekhnologii, upravleniye. No. 6. P. 70–85. (in Russ.) https://doi.org/10.35567/19994508_2022_6_5
34. Magritsky D.V., Banshchikova L.S. (2021) Sediment yield response in the river basin. Lena on climate change and economic activity. In: Dynamics and interaction of the earth's geospheres. Dinamika i vzaimodeystviye geosfer zemli. Materialy Vserossiyskoy konferentsii s mezhdunarodnym uchastiyem, posvyashchennoy 100-letiyu podgotovki v Tomskom gosudarstvennom universitete spetsialistov v oblasti nauk o Zemle. V 3-kh tomakh. Tom II. Tomsk.: Nauki o Zemle(Publ.). P. 61–65. (in Russ.)
35. Magritsky D.V., Frolova N.L., Pakhomova O.M. (2020) Potential Hydrological Restrictions on Water Use in the Basins of Rivers Flowing into Russian Arctic Seas. GES. Vol. 13, No. 2. P. 25–34. https://doi.org/10.24057/2071-9388-2019-59.
36. Maltsev K., Golosov V., Yermolaev O. et al. (2022) Assessment of Net Erosion and Suspended Sediments Yield within River Basins of the Agricultural Belt of Russia. Water. 2022. Vol. 14. No. 18. P. 2781. https://doi.org/10.3390/w14182781
37. Maltsev K.A., Yermolaev O.P. (2019) Potential soil loss from erosion on arable lands in the European part of Russia. Eurasian Soil Science. 2019. Vol. 52. No 12. P. 1588-1597. https://doi.org/10.1134/S106422931912010X
38. Melkonian A.K., Willis M.J., Pritchard M.E. et al. (2016) Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. Vol. 174. P. 244–257. https://doi.org/10.1016/j.rse.2015.11.001.
39. Methodical instructions. Turbidity of water. Methodology for performing measurements: RD 52.08.104-2002. 2002. 13 p. (in Russ.)
40. Morgan R.P.C., Morgan D., Finney H.J. (1984) A predictive model for assessment of erosion risk. Journal of Agricultural Engineering Research. Vol. 30. P. 245–253. https://doi.org/10.1016/S0021-8634(84)80025-6
41. Morgan R.P.C., Quinton J.N., Smith R.E., et al. (1998) The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landforms. Vol. 23. No. 6. P. 527–544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
42. Nachtergaele F.O., Velthuizen H., Verelst L. et al. (2012) Harmonized World Soil Database (version 1.2). Food and Agriculture Organization of the UN, International Institute for Applied Systems Analysis, ISRIC - World Soil Information, Institute of Soil Science - Chinese Academy of Sciences, Joint Research Centre of the EC. P. 42.
43. Nasonova O.N., Gusev Y.M., Kovalev E. (2023) Climate Change Impact On Water Balance Components In Arctic River Basins. GES. Vol. 15. No. 4. P. 148–157. https://doi.org/10.24057/2071-9388-2021-144
44. Nearing M.A. (1997) A single, continuous function for slope steepness influence on soil loss. Soil Science Society of America Journal. Vol. 61. No. 3. P. 917–919. https://doi.org/10.2136/sssaj1997.03615995006100030029x
45. Nummelin A., Ilicak M., Li C., Smedsrud L.H. (2016) Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans. Vol. 121. No. 1. P. 617–637. https://doi.org/10.1002/2015JC011156.
46. Panagos P., Borrelli P., Meusburger K. et al.(2017) Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep. Vol. 7. № 1. P. 4175. https://doi.org/10.1038/s41598-017-04282-8
47. Panagos P., Borrelli P., Meusburger K. et al. (2015) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy. Vol. 48. P. 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
48. Park H., Sherstiukov A.B., Fedorov A.N. et al. (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ. Res. Lett. Vol. 9. No. 6. P. 064026. https://doi.org/10.1088/1748-9326/9/6/064026
49. Pieri L., Bittelli M., Wu J.Q. et al. (2007) Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. Journal of Hydrology. 2007. Vol. 336. No. 1–2. P. 84–97. https://doi.org/10.1016/j.jhydrol.2006.12.014
50. Pietroń J., Chalov S.R., Chalova A.S. et al.(2017) Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. CATENA. Vol. 152. P. 82–93. https://doi.org/10.1016/j.catena.2017.01.008
51. Renard K.G., Foster G.R., Weesies G.A. et al.(1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Resived Universal Soil Loss Equation (RUSLE). Agriculture Handbook. 403 p.
52. Renard K.G., Yoder D.C., Lightle D.T. et al. (2010) Universal Soil Loss Equation and Revised Universal Soil Loss Equation. In: Handbook of Erosion Modelling. Wiley. 2010. P. 135–167. https://doi.org/10.1002/9781444328455.ch8
53. Reuter H.I., Neison A., Strobl P. et al. (2009) A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE. P. 240-243. https://doi.org/10.1109/IGARSS.2009.5417688
54. Ryzhov Y.V. (2009) The erosion-accumulative processes within the basins of small rivers of southern East Siberia. Geography and Natural Resources. 2009. Vol. 30. No 3. P. 265-271. https://doi.org/ 10.1016/j.gnr.2009.09.011
55. Schob A., Schmidt J., Tenholtern R. (2006) Derivation of site-related measures to minimise soil erosion on the watershed scale in the Saxonian loess belt using the model EROSION 3D. CATENA. Vol. 68. No. 2–3. P. 153–160. https://doi.org/10.1016/j.catena.2006.04.009
56. Sheng M., Fang H. Research progress in WaTEM/SEDEM model and its application prospect. Progress in geography. Vol. 33. No. 1. P. 85–91. https://doi.org/10.11820/dlkxjz.2014.01.010
57. Shynbergenov E.A., Ermolaev O.P. (2017) Potential soil erosion in the river basin. Lena. Vestnik Udmurtskogo universiteta. Seriya “Biologiya. Nauki o Zemle”. Vol. 27. No. 4. P. 513–528. (in Russ.)
58. Tadono T., Ishida H., Oda F. et al. (2014) Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. Vol. II–4. P. 71–76. https://doi.org/10.5194/isprsannals-II-4-71-2014.
59. Van Rompaey A.J.J., Verstraeten G., Van Oost K. et al. (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf. Process. Landforms. Vol. 26. No. 11. P. 1221–1236. https://doi.org/10.1002/esp.275
60. Van Rompaey A., Bazzoffi P., Jones R.J.A. et al. (2005) Modeling sediment yields in Italian catchments. Geomorphology. Vol. 65. No. 1–2. P. 157–169. https://doi.org/10.1016/j.geomorph.2004.08.006
61. Verstraeten G., Prosser I.P., Fogarty P. (2007) Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology. Vol. 334. No. 3–4. P. 440–454. https://doi.org/10.1016/j.jhydrol.2006.10.025
62. Vieira D.C.S., Borrelli P., Jahanianfard D. et al. (2023) Wildfires in Europe: Burned soils require attention. Environmental Research. Vol. 217. P. 114936. https://doi.org/10.1016/j.envres.2022.114936
63. Vigiak O., Malagó A., Bouraoui F. et al. (2015) Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large basins. Science of The Total Environment. Vol. 538. P. 855–875. https://doi.org/10.1016/j.scitotenv.2015.08.095
64. Vihma T., Uotila P., Sandven S. et al. (2019) Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmos. Chem. Phys. Vol. 19. No. 3. P. 1941–1970. https://doi.org/10.5194/acp-19-1941-2019
65. Wessel B., Huber M., Wohlfart C. et al.(2018) Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing. 2018. Vol. 139. P. 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
66. Wischmeier W.H., Smith D.D. (1978) Predicting rainfall erosion losses: A guide to conservation planning: Agricultural HandBook 537. Washington:USDA. 67 p.
67. Yamazaki D., Ikeshima D., Tawatari R. et al. (2017) A high-accuracy map of global terrain elevations: Accurate Global Terrain Elevation map. Geophys. Res. Lett. Vol. 44. No. 11. P. 5844–5853. https://doi.org/10.1002/2017GL072874
68. Zhao G., Gao P., Tian P. et al. (2020) Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. CATENA. 2020. Vol. 185. P. 104284. https://doi.org/10.1016/j.catena.2019.104284
69. Zhidkin A.P., Smirnova M.A., Lozbenev N.I. et al. (2021) Digital mapping of soil associations and eroded soils (Prokhorovskii district, Belgorod oblast). Eurasian Soil Science. Vol. 54. No. P. 13-24. https://doi.org/10.31857/S0032180X21010159
Supplementary files
Review
For citations:
Maltsev K.A., Chalov S.R., Ivanov M.A., Maltseva T.S., Fingert E.A., Petrova E.V. Dynamics of erosion and sediment supply in near-pristine lowland catchments of Central Siberia due to land use changes and forest fires. Geomorfologiya i Paleogeografiya. 2025;56(2):231-250. (In Russ.) https://doi.org/10.31857/S2949178925020043. EDN: GPTLUQ