Preview

Geomorfologiya i Paleogeografiya

Advanced search

Landscape and climatic conditions in the Eastern Sayan Foothills in the Holocene according to the study of the Sosnovka Mire

https://doi.org/10.31857/S2949178925030052

Abstract

This study is devoted to the vegetation dynamics, hydroclimatic conditions and fires research in the northwestern macroslope foothills of the Eastern Sayan. The results of palaeoecological reconstruction obtained based on AMS dating, pollen, macrofossils, macrocharcoal and malacofaunal analyses of the Sosnovka mire deposits (right bank of the Yenisei River, southern part of the Rybinskaya Depression) covering the last ≈ 11,000 calendar years are presented. The grain size analysis of the mineral deposits underlying peat was performed and minerals of different size fractions were studied using scanning electron microscopy. The data show that about 10, 000 calendar yeas ago, a shallow water body experiencing periodic shallowing were formed in the floodplain of the Kan River. The process of mire formation began ≈9,700–8,500 cal. yr BP at the optimum of heat and moisture supply, when the dry valleys were covered with a mixed siberian pine-spruce-fir forest dominated by spruce and fir. During the Holocene Thermal Optimum (7,500–6,000 years ago) a reduction in spruce and fir in the composition of the forest stand, increased fire activity, clearing of forests, beginning of mire formation in the floodplains of rivers with catchments in the western part of the Eastern Sayan foothills occurred. The periods of decreased heat supply and increased humidity occurred at 5,500–5,200, 3,560–2,960, 2,300–2,000, 1,800–1,300 cal. yr BP. This, among other things, caused the expansion of the range of dark coniferous forests, with the most significant response in the range of 1,360–1,300 cal. yr BP. Changes in climatic conditions towards aridization and increased continentality 7,500–6,000 cal. yr BP, 3,800–3,600 and 2,000–1,800 cal. yr BP contributed to the rise of the lower boundary of dark coniferous forests and increased fire activity. The last 800 years have been characterized by strengthening of continentality, expansion of forests with Pinus sylvestris and the highest fire activity (in the last 100 years the rate of accumulation of macroscopic charcoal has been 80 particles/cm2 per year).

About the Authors

А. V. Grenaderova
Institute of Ecology and Geography Siberian Federal University, Krasnoyarsk
Russian Federation


A. B. Mikhailova
Institute of Ecology and Geography Siberian Federal University, Krasnoyarsk
Russian Federation


R. A. Sharafutdinov
Institute of Ecology and Geography Siberian Federal University, Krasnoyarsk
Russian Federation


T. G. Stojko
Pedagogical Institute of Belinsky Penza State University, Penza
Russian Federation


References

1. Alexandrowicz S.W., Alexandrowicz W.P. (2011) Analiza malakologiczna - metody badań i interpretacji. Krakow: Polska Akademia Umiejętności. 301 pp.

2. Berger A., Loutre, M.F. (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, Vol. 10. Iss. 4. P. 297–317. https://doi.org/10.1016/0277-3791(91)90033-q

3. Beug H.-J. (2004) Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Munich: Publisher Verlag Friedrich Pfeil. 542 pp. https://doi.org/10.1002/jqs.915

4. Bezrukova E., Tarasov P., Solovieva N. et al. (2010) Last glacial-interglacial vegetation and environmental dynamics in southern Siberia: Chronology, forcing and feedbacks. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 296. P. 185–198. https://doi.org/10.1016/j.palaeo.2010.07.020

5. Bezrukova E.V., Abzaeva A.A., Letunova P.P. et al. (2005) Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International. Vol. 136. Iss. 1. P 47–57. https://doi.org/10.1016/j.quaint.2004.11.007

6. Blaauw M. (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology. Vol. 5, No. 5. P. 512–518. https://doi.org/10.1016/j.quageo.2010.01.002

7. Clark J.S. (1988). Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling. Quaternary Research. Vol. 30. P. 67–80. https://doi.org/10.1016/0033-5894(88)90088-9

8. Clark J.S., Lynch J.A., Stocks B.J. et al. (1998) Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene. Vol. 8. Iss. 1. P. 19–29. https://doi.org/10.1191/095968398672501165

9. Columbu A., Zhornyak L.V., Zanchetta G. (2023) A mid-Holocene stalagmite multiproxy record from southern Siberia (Krasnoyarsk, Russia) linked to the Siberian High patterns. Quaternary Science Reviews. Vol. 320. P. 108355. https://doi.org/10.1016/j.quascirev.2023.108355

10. Grenaderova A.V., Rodionova A.B., Miteva J.S. et al. (2020) Holocene paleovegetation reconstruction of the Eastern Sayan mountain peatlands (north-west macroslope) using a multi-proxy analysis. In: 1st International IALE-Russia online conference “Landscape Science and Landscape Ecology: Considering Responses to Global Challenges”. PP. 103.

11. Helama S., Jones P.D., Briffa K.R. (2017) Dark Ages Cold Period: A literature review and directions for future research. The Holocene. Vol. 27. Iss. 10. P. 1600–1606. https://doi.org/10.1177/0959683617693898

12. Higuera P.E. (2009) CharAnalysis 0.9: Diagnostic and analytical tools for sediment-charcoal analysis : user’s guide. Bozeman, MT, USA: Montana State University. 27 p.

13. Horsák M., Chytrý M., Hájková P. et al. (2015) European glacial relict snails and plants: environmental contextof their modern refugial occurrence in southern Siberia. Boreas. № 4 (44). P. 638–657.

14. Horsák M., Chytry M., Pokryszko B.M. (2010) Habitats of relict terrestrial snails in southern Siberia: lessons forthe reconstruction of palaeoenvironments of full-glacial Europe. Journal of Biogeography. № 37. Р. 1450–1462.

15. Kosanovic C., Fermani S., Falini G. et al. (2017) Crystallization of Calcium Carbonate in Alginate and Xanthan Hydrogels. Crystals. Vol. 7. Iss. 12. P. 355. https://doi.org/10.3390/cryst7120355

16. Ložek V. (1964) Quartermollusken der Tschechoslowakei / V. Ložek. Praha: Rozpravy Ústředního ústavu geologického. 374 p.

17. MacArthur R.H. (1957) On the relative abundance of bird species. Proceedings of the National Academy of Sciences. Vol. 43. No. 3. P. 293–295. https://doi.org/10.1073/pnas.43.3.293

18. Mackay A.W., Bezrukova E.V., Boyle J.F. et al. (2013) Multiproxy evidence for abrupt climate change impacts on terrestrial and freshwater ecosystems in the Ol’khon region of Lake Baikal, central Asia. Quaternary International. Vol. 290–291. P. 46–56. https://doi.org/10.1016/j.quaint.2012.09.031

19. Mayewski P.A., Rohling E.E., Stager J.C. et al. (2004) Holocene climate variability // Quaternary Research. Vol. 62. P. 243–255. https://doi.org/10.1016/j.yqres.2004.07.001

20. Mikhailova A.B., Grenaderova A.V., Kurina I.V. et al. (2021) Holocene vegetation and hydroclimate changes in the Kansk forest steppe, Yenisei River Basin, East Siberia. Boreas. Vol. 50. P. 948-966. https://doi.org/10.1111/bor.12542

21. Moberg A., Sonechkin D.M., Holmgren K. et al. (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature. Vol. 433. P. 613–617. https://doi.org/10.1038/nature03265

22. Moore P.D., Webb J.A., Collinsom M.E. (1991) Pollen analysis. Oxford: blackwell scientific publications. 216 p.

23. Reimer P.J., Austin W.E.N., Bard E. (2020) The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. Vol. 62. Iss. 4. P. 725–757. https://doi.org/10.1017/rdc.2020.41

24. Revelles J., Burjachs F., van Geel B. (2016) Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Draga (Girona, Spain). Review of Palaeobotany and Palynology. Vol. 225. P. 1–20. https://doi.org/10.1016/j.revpalbo.2015.11.001

25. Solomina O., Haeberli W., Kull C. et al. (2008) Historical and Holocene glacier–climate variations: General concepts and overview. Global and Planetary Change. Vol. 60. No. 1–2. P. 1–9. http://doi.org/10.1016/j.gloplacha.2007.02.001

26. Sysoev A., Schileyko A. (2009) Land Snails and Slugs of Russia and Adjacent Countries. Sofia: Pensoft Publishers. 454 p.

27. Tarasov P., Bezrukova E., Karabanov E. et al. (2007) Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 252. P. 440–457. https://doi.org/10.1016/j.palaeo.2007.05.002

28. Tarasov P.E., Bezrukova E.V., Krivonogov S.K. (2009) Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel. Climate of the Past Discussions. Vol. 5. P. 127–151. http://doi.org/10.5194/cpd-5-127-2009

29. Wang Y., Liu X., Herzschuh U. (2010) Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews. Vol. 103. P. 135–153. https://doi.org/10.1016/j.earscirev.2010.09.004

30. Wanner H., Beer J., Butikofer J. et al. (2008) Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews. Vol. 27. No 19–20. P. 1791–1828. http://doi.org/10.1016/j.quascirev.2008.06.013

31. White D.A., Preece R., Shchetnikov A.A. et al. (2008) Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia. Quaternary Science Reviews. Vol. 27. P. 962–987. https://doi.org/10.1016/j.quascirev.2008.01.010

32. Zsombor M., Pekker P., Pósfai M. et al. (2019) Calcium carbonate precipitation induced by clay minerals. In: Goldschmidt Conference. Barcelona: European Association of Geochemistry and the Geochemical Society. 1 p.


Supplementary files

Review

For citations:


Grenaderova А.V., Mikhailova A.B., Sharafutdinov R.A., Stojko T.G. Landscape and climatic conditions in the Eastern Sayan Foothills in the Holocene according to the study of the Sosnovka Mire. Geomorfologiya i Paleogeografiya. 2025;56(3):418-441. (In Russ.) https://doi.org/10.31857/S2949178925030052

Views: 30


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)