Preview

Geomorfologiya i Paleogeografiya

Advanced search

Digital images analysis of macroscopic charcoal particles from lake and peat sediments for palaeogeographic reconstruction

https://doi.org/10.31857/10.31857/S2949178925020118

EDN: GQLSPS

Abstract

The analysis of macroscopic charcoal particles in sediments of different genesis is one of the most common approaches to reconstruct the past fire regimes. The method requires a great deal of time and effort on the part of the researcher. It implies continuous sampling of the sediment core and counting of all charcoal particles with linear dimensions greater than 125 µm in a sample of fixed volume. The purpose of this paper is to present an automatic method that we have developed for the calculation of macroscopic charcoal particles using image analysis. This method is easily reproducible, not technologically demanding, and fast. It allows us to obtain additional palaeoecological information based on the study of geometric characteristics and particle area. A comparison of the results obtained by a standard manual count of the charcoal particles in the test samples and the number of particles determined from the image showed that the method was accurate enough for palaeogeographic reconstructions: Spearman correlation coefficient R = 0.85, R2 = 0.71, MAPE = 31.58% (the mean absolute percentage error), determined particle area comparison revealed R = 0.99, R2 = 0.98, MAPE = 21.45%. The results of macroscopic charcoal analysis of the peat core from Pobochnoye peatland (Buzuluksky Bor National Park, Orenburg region) are presented to demonstrate the capabilities of the developed method. One thousand samples collected from 10 m of peat sediments accumulated over 11.4 ka years were analyzed, and 6,000 images were processed. The results of the analysis include determined charcoal accumulation rates, fire episodes and inter-fire intervals, as well as classification of charcoal particles into grass and wood morphotypes. The variation in charcoal particle size was also estimated for each fire episode, providing additional palaeoecological information about Holocene fires.

About the Authors

A. Е. Shatunov
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


N. G. Mazei
Lomonosov Moscow State University, Faculty of Geography, Moscow
Russian Federation


Е. Yu. Novenko
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


References

1. Baddeley A., Turner R. (2005) spatstat: An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software. Vol. 12. No. 6. P. 1–42. https://doi.org/10.18637/jss.v012.i06

2. Blaauw M., Christen J.A. (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. No. 3. P. 457–474. https://doi.org/10.1214/11-BA618

3. Bond W.J., Woodward F.I., Midgley G.F. (2005) The global distribution of ecosystems in a world without fire. New Phytologist. Vol. 165. No. 2. p. 525–537. http://dx.doi.org/10.1111/j.1469-8137.2004.01252.x

4. Bowman D.M.J.S., Balch J.K., Artaxo P. et al. (2009) Fire in the Earth System. Science. Vol. 324. P. 481–484. https://doi.org/10.1126/science.1163886, 2009

5. Calder W.J., Parker D., Stopka C.J. et al. (2015) Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. The Proceedings of the National Academy of Sciences USA. Vol. 112. P. 13261–13266. https://doi.org/10.1073/pnas.1500796112

6. Chibilev A.A. Velmovsky P.V., Kin N.O. et al. (2008) Buzulukskiy boron. Ekaterinburg: Ural Branch of RAS. 186 p. [in Russ.]

7. Conedera M., Tinner W., Neff C. et al. (2009) Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews. Vol. 28. p. 555–576. https://doi.org/10.1016/j.quascirev.2008.11.005

8. Connor S., Ross S., Sobotkova A. et al. (2013) Environmental conditions in the SE Balkans since the Last Glacial Maximum and their influence on the spread of agriculture into Europe. Quaternary Science Reviews. Vol. 68. P. 200–215. https://doi.org/10.1016/j.quascirev.2013.02.011

9. Dellasala D., Hanson C. (2015) The Ecological Importance of Mixed-Severity Fires: Nature's Phoenix. NY: Elsevier Inc. 409 p.

10. Ferreira T., Rasband W. ImageJ User Guide. ImageJ Wiki. [Electronic data]. URL: https://imagej.net/ij/docs/guide/ (access date: 24.04.2024).

11. Feurdean A. (2021) Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga. Biogeosciences. Vol. 18. P. 3805–3821. https://doi.org/10.5194/bg-18-3805-2021

12. Feurdean A., Vachula R.S., Hanganu D. et al. (2023) Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type. Biogeosciences. Vol. 20. P. 5069–5085. https://doi.org/10.5194/bg-20-5069-2023

13. Finsinger W., Bonnici I. Tapas: an R package to perform trend and peaks analysis. Github.com. [Electronic data]. URL: https://github.com/wfinsinger/tapas (access date: 24.04.2024).

14. Finsinger W., Morales-Molino C., Gałka M. et al. (2017) Holocene vegetation and fire dynamics at Crveni Potok, a small mire in the Dinaric Alps (Tara National Park, Serbia). Quaternary Science Reviews. Vol. 167. P. 63–77. https://doi.org/10.1016/j.quascirev.2017.04.032

15. Fletcher M., Benson A., Heijnis H. et al. (2015) Changes in biomass burning mark the onset of a ENSO-influenced climate regime at 42 S in southwest Tasmania, Australi. Quaternary Science Reviews. Vol. 122. P. 222–232. https://doi.org/10.1016/j.quascirev.2015.05.002

16. Furyaev V.В. (1996) The role of fires in the process of forest formation. Novosibirsk: Nauka. Siberian Branch. 253 p. [in Russ.]

17. Halsall K.M., Ellingsen V.M., Asplund J. et al. (2018) Fossil charcoal quantification using manual and image analysis approaches. The Holocene. Vol. 28(8). P. 1345–1353. https://doi.org/10.1177/0959683618771488

18. Higuera P. (2009) CharAnalysis 0.9: Diagnostic and Analytical Tools for Sediment Charcoal Analysis (User´s Guide). Bozeman, MT: Montana State Univ. p. 32.

19. Klimentyev A.I. (2010) Buzulukskiy boron: soils, landscapes and factors of geographical environment. Ekaterinburg: Typography "Ural Centre for Academic Service" (Publ.). 401 p. [in Russ.]

20. Kupriyanov D.A., Novenko E.Yu. (2021) Reconstruction of the history of forest fires in the Southern part of the Mordovian Reserve in the Holocene according to the data of analysis of macroscopic coal particles in peat. Proceedings of the P.G. Smidovich Mordovian State Nature Reserve. No. 26: 176–192. [in Russ.]

21. Lestienne M., Hely C., Curt T. et al. (2020) Combining the Monthly Drought Code and Paleoecological Data to Assess Holocene Climate Impact on Mediterranean Fire Regime. Fire. Vol. 3(2). No. 8. P. 1–22. https://doi.org/10.3390/fire3020008

22. Lesven J., Druguet D.M., Borne R. et al. (2022) Testing a new automated macrocharcoal detection method applied to a transect of lacustrine sediment cores in eastern Canada. Quaternary Science Reviews. Vol. 295. P. 1–15. https://doi.org/10.1016/j.quascirev.2022.107780

23. Leys B., Carcaillet C., Dezileau L. et al. (2013) A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quaternary Research. Vol. 79. P. 337–349. https://doi.org/10.1016/j.yqres.2013.01.003

24. Luelmo-Lautenschlaeger R., Blarquez O., Perez-Diaz S. et al. (2019) The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain). Fire. Vol. 2(4). No. 54. P. 1–23. https://doi.org/10.3390/fire2040054

25. Mooney S., Tinner W. (2011) The analysis of charcoal in peat and organic sediments. Mires and Peat. Vol. 7. P. 1–18.

26. Müller K., Wickham H. tibble: Simple Data Frames [Electronic data]. URL: https://github.com/tidyverse/tibble/ (access date: 24.04.2024).

27. Munoz A.A., Gonzalez M.E., Schneider-Valenzuela I. et al. (2023) Multiproxy Approach to Reconstruct the Fire History of Araucaria araucana Forests in the Nahuelbuta Coastal Range, Chile. Forests. Vol. 14. P. 1–26. https://doi.org/10.3390/f14061082

28. Nesterova M.I., Ryabogina N.E. (2022) Dynamics of forest fires in the vicinity of Tyumen during 9000 years. In: Ecosystem Dynamics in the Holocene: Collection of articles on the materials of the VI All-Russian Scientific. Conference. St. Petersburg: Russian State Pedagogical University named after A. I. Herzen. A. I. Herzen. P. 495–499. [in Russ.]

29. Novenko E.Yu. (2021) Landscape and climate dynamics in central and eastern Europe in the Holocene - forecast estimates of changes in the natural environment. Geomorphology. No. 52 (3). P. 24–47. [in Russ.]. https://doi.org/10.31857/S0435428121030093

30. Otsu N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. Vol. 9 (1). P. 62–66. https://doi.org/10.1109/TSMC.1979.4310076

31. Pupysheva M.A., Blyakharchuk T.A. (2024) Reconstruction of the Holocene palaeofire history in the middle taiga subzone of Western Siberia based on the data of macroangular analysis of lake sediments. Geospheric Studies. No. 1. P. 135–151. [in Russ.]. https://doi.org/10.17223/25421379/30/8.

32. Rehn E., Rehn A., Possemiers A. (2019) Fossil charcoal particle identification and classification by two convolutional neural networks. Quaternary Science Reviews. Vol. 226. P. 1–6. https://doi.org/10.1016/j.quascirev.2019.106038

33. Rogozin D.Y., Burdin L.A., Bolobanshchikova G.N. (2023) Coal macroparticles in the upper layers of lake bottom sediments of the North Minusinsk Basin (southern Siberia) as an indicator of fire dynamics in the surrounding area. Journal of the Siberian Federal University. Series: Biology. No. 16(2). P. 252–266. [in Russ.]

34. Rudaya N., Xianyong C., Snezhana Z. et al. (2020) Postglacial history of the Steppe Altai: Climate, fire and plant diversity. Quaternary Science Reviews. Vol. 249. P. 1–20. https://doi.org/10.1016/j.quascirev.2020.106616

35. Sannikov S. N. Goldammer J. G. (1996) Fire ecology of pine forests of Northern Eurasia. In: Fire in ecosystems of boreal Eurasia. KLUWER: Springer Science+Business Media B.V. Formerly Kluwer Academic Publishers B.V. P. 151–167.

36. Sannikov S.N.N., Sannikova N.S., Petrova I.V. (2012) Essays on the theory of forest population biology. Ekaterinburg: Ural Branch of the Russian Academy of Sciences. Bot. garden. 277 p. [in Russ.]

37. Sedykh V.N. (2009) Forest formation process. Novosibirsk: Nauka. Siberian Branch. 164 p. [in Russ.]

38. Słowiński M., Lamentowicz M., Łuców D. et al. (2019) Paleoecological and historical data as an important tool in ecosystem management. Journal of Environmental Management. Vol. 236. Р. 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002

39. Snitker G. (2020) The Charcoal Quantification Tool (CharTool): A Suite of Open-source Tools for Quantifying Charcoal Fragments and Sediment Properties in Archaeological and Paleoecological Analysis. Ethnobiology Letters. Vol. 11. P. 103–115. https://doi.org/10.14237/ebl.11.1.2020.1653

40. Sukhomilova V.V. (2013) Fires in nature as a biospheric phenomenon. Birobidzhan: Amursk State Univ. Birobidzhan branch. 250 p. [in Russ.]

41. Vachula R.S., Russell J.M., Huang Y. et al. (2018) Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 508. P. 166–175. https://doi.org/10.1016/j.palaeo.2018.07.032

42. Vachula R.S., Sae-Lim J., Li R. (2021) A critical appraisal of charcoal morphometry as a paleofire fuel type proxy. Quaternary Science Reviews. Vol. 262. P. 1–11. https://doi.org/10.1016/j.quascirev.2021.106979

43. Wickham H, François R, Henry L. et al. Dplyr: A Grammar of Data Manipulation – R package version 1.1.4. [Electronic data]. URL: https://github.com/tidyverse/dplyr/ (access date: 24.04.2024).

44. Wijffels J., von Gioi G. (2017). image.ContourDetector: image.ContourDetector: an R package to detect contour lines in images – R package version 0.1.0. [Electronic data]. URL: https://github.com/bnosac/image/ (access date: 24.04.2024).

45. Zeileis A., Grothendieck G. (2005) zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software. Vol. 14 (6). P. 1–27. https://doi.org/10.18637/jss.v014.i06


Supplementary files

Review

For citations:


Shatunov A.Е., Mazei N.G., Novenko Е.Yu. Digital images analysis of macroscopic charcoal particles from lake and peat sediments for palaeogeographic reconstruction. Geomorfologiya i Paleogeografiya. 2025;56(2):341-354. (In Russ.) https://doi.org/10.31857/10.31857/S2949178925020118. EDN: GQLSPS

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)