Paleofire dynamics of the Tobol region (based on the lake-bog deposits of the Oskino peat bog)
https://doi.org/10.31857/S2949178925030062
Abstract
This study investigates the spatiotemporal dynamics of fire regimes in the northern forest-steppe zone of the Tobol region (south of the Tyumen region) over the past 9.6 ka by integrating palaeoecological, archaeological, and paleofire data from the Oskino lake-bog sediments. The site’s location, situated within northern forest-steppe zone and surrounded by archaeological sites spanning various periods, allows for the assessment of both natural (climatic) and anthropogenic influences on fire regimes. Changes in the peat properties, radiocarbon dating, and quantification of macrocharcoal particles from the Oskino-21 core were employed. Data were correlated with existing macrobotanical and pollen data from the Oskino-09 core, providing a comprehensive context.
The results demonstrate a positive correlation between reduced moisture levels and increased fire activity, along with a correlation between pine forest dominance and fire frequency. Before human settlement of the territory (9.5–8.2 ka BP), high pyrogenic event concentrations suggest a climate–driven fire regime, potentially associated with drier conditions and the prevalence of pine forests. Palynological data from the Neolithic to early Iron Age (up to 4.5 ka BP), reveals minimal human impact on vegetation which could be related to an appropriative economy. However, an increase in fire activity is observed between 5.9 and 4.6 ka BP, potentially linked to human settlement along the lake shore during the Eneolithic and Bronze Age. Between 4.7 and 2.9 ka BP, a shift towards settled pastoralism is observed, accompanied by a decrease in fire frequency. This may be attributed to population migration towards floodplain areas and also increased humidity. The study unequivocally demonstrates a pronounced increase in anthropogenic influence on fire regimes starting at 1.4 ka BP, with economic activities significantly impacting both the background rate of charcoal accumulation and the frequency of fire episodes.
About the Authors
E. D. TrubitsynaRussian Federation
A. S. Afonin
Russian Federation
N. E. Ryabogina
Sweden
References
1. Bondur V.G., Mokhov I.I., Voronova O.S. et al. (2020) Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes. Doklady Earth Sciences. Pleiades Publishing. Vol. 492, № 1. P. 370-375. https://doi.org/10.1134/S1028334X20050049
2. Feurdean A., Florescu G., Tantau I. et al. (2020) Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia. Quaternary Science Reviews. Vol. 244. P. 106495 https://doi.org/10.1016/j.quascirev.2020.106495
3. Finsinger W., Bonnici I. (2022) Tapas: an R package to perform trend and peaks analysis. Zenodo, https://doi.org/10.5281/zenodo.6344463.
4. Goldammer J.G., Furyaev, V.V. (1996) Fire in Ecosystems of BorealEurasia: Ecological Impacts and Links to the Global System, in:Fire in Ecosystems of Boreal Eurasia. Forestry Sciences. Vol. 48. P. 1-20.
5. Hamilton D.S., Hantson S., Scott C.E. et al. (2018) Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nature Communications. Vol. 9. №. 1. P. 1-12. https://doi.org/10.1038/s41467-018-05592-9
6. Harrison S.P., Marlon J.R., Bartlein P.J. (2010) Fire in the Earth system. Changing climates, earth systems and society. Springer. Dordrecht. 2010. P. 21–48. https://doi.org/10.1007/978-90-481-8716-4_3
7. Haslett J., Parnell A. (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society Series C Applied Statistics. Vol. 57. Is. 4. P. 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x
8. Heiri O., Lotter A.F., Lemcke G. (2001) Loss on ignition as a method for estimating organic and carbonate content in deposits: reproducibility and comparability of results. Journal of Paleolimnology. 25. P. 101-110.
9. Kelly R.F., Higuera P.E., Barrett C.M. et al. (2011) Signal-to-noise index to quantify the potential for peak detection in sediment – charcoal records. Quaternary Research. Vol. 75. № 1. P. 11-17. https://doi.org/10.1016/j.yqres.2010.07.011
10. Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. (2021) Wildfires in the Siberian taiga. Ambio. Vol. 50. № 11. P. 1953-1974. https://doi.org/10.1007/s13280-020-01490-x
11. Khozyainova N.V. (2000) Features of flora and vegetation of protected areas of the northern forest-steppe of the Tyumen region. Problemy vzaimodeystviya cheloveka i prirodnoy sredy. №1. P. 85-89.
12. Kremnetski K.V., Tarasov P.E., Cherkinskiy A.E. (1994) History of the island pine forests of Kazakhstan in the Holocene. Botanicheskiy zhurnal. Vol. 79. № 3. P. 13-30. (in Russ.).
13. Krivonogov S.K., Takahara H., Yamamuro M., et al. (2012) Regional to local environmental changes in southern Western Siberia: Evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 331–332. P. 177–193. https://doi.org/10.1016/j.palaeo.2011.09.013
14. Landshafty golotsena i vzaimodeystviye kul'tur v Tobolo-Ishimskom mezhdurech'ye (Holocene landscapes and interaction of cultures in the Tobol-Ishim interfluve). (2008) / V.I. Molodin (Ed.) Novosibirsk: Nauka (Publ.). P. 212 (in Russ.).
15. Maslennikova A.V., Udachin V.N., Deryagin V.V. (2014) Paleoekologiya i geokhimiya ozernoy sedimentatsii golotsena Urala (Paleoecology and geochemistry of lacustrine sedimentation of the Holocene of the Urals). Ekaterinburg: RIO Ural Branch of the Russian Academy of Sciences (Publ.), P 136. (in Russ.).
16. Matveeva N.P., Larina N.S., Berlina S.V. et al. (2005) Kompleksnoye izucheniye usloviy zhizni drevnego naseleniya Zapadnoy Sibiri (Comprehensive study of living conditions of the ancient population of Western Siberia). Novosibirsk: Publishing house of the Siberian Branch of the Russian Academy of Sciences (Publ.). P. 228 (in Russ.).
17. Mooney S., Tinner W. (2001) The analysis of charcoal in peat and organic sediments. Mires and Peat. Vol. 7. P. 1-18.
18. Nasonova E.D., Rudaya N.A. (2015) Palaeoenvironmental Conditions of Human Habitation in Pritobolye:from the Neolithic to the Middle Ages: (Based on the Pollen Data from Settlement Oskino Boloto). Izvestiya IrGU. Ser. Geoarkheologiya. Etnologiya. Antropologiya.. Vol. 13. P. 96–105. (in Russ.).
19. Nasonova E.D., Rudaya N.A. (2016) Palynological method as a way of stratification of archeological objects: Сase study Oskino Boloto. Environmental dynamics and global climate change. №1 (13). P. 93-100. (in Russ.).
20. Nasonova E.D., Ryabogina N.E., Afonin A.S., Ivanov S.N., Tkachev A.A. (2019) Vegetation and climate of the Iset-Tobol interfluve from the Eneolithic to the Early Iron Age: New palaeoecological data on the Oskino-09 swamp. Vestnik Arheologii, Antropologii i Etnografii. №4 (47). P.15-27. https://doi.org/10.20874/2071-0437-2019-47-4-2 (in Russ.).
21. Pupysheva M.A., Blyakharchuk T.A. (2024) Reconstruction of the Holocene paleo-fire history in the middle taiga subzone of Western Siberia according to the macro-charcoal analysis of lake sediments.Geoecology. № 1. С. 135-151. https://doi.org/ 10.17223/25421379/30/8 (in Russ.).
22. R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
23. Reimer P.J., Austin W.E.N., Bard E. et al. (2020) The intcal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal BP). Radiocarbon. 62(4). P. 725-757. https://doi.org/10.1017/RDC.2020.41
24. Rudaya N., Nazarova L., Nourgaliev D. et al. (2012) Mid-late Holocene environmental history of Kulunda, southern West Siberia: Vegetation, climate and humans. Quaternary Science Reviews. Vol. 48. P. 32–42. https://doi.org/10.1016/j.quascirev.2012.06.002
25. Ryabogina N.E., Afonin A.S., Ivanov S.N. et al. (2019) Holocene paleoenvironmental chances reflected in peat and lake sediments records of Western Siberia: Geochemical and plant macrofossil proxies. Quaternary International. Vol. 528. P. 73-87. https://doi.org/10.1016/j.quaint.2019.04.006
26. Ryabogina N.E., Afonin A.S., Ivanov S.N. (2020) Late Glacial and Holocene in the south of Western Siberia: geochemical indices and pollen data in Kyrtyma Lake sediments. In: The 5th International Conference “Ecosystem dynamics in the Holocene” IOP (Publ). 438 012023. https://doi:10.1088/1755-1315/438/1/012023
27. Tkachev A.A., Tkacheva N.A. (2006) Cultural complexes of the Oskino Boloto settlement (based on materials from excavations in 2005). Vestnik Arheologii, Antropologii i Etnografii. № 7. P. 241-248.
28. Yuzhanina E.D., Ivanov S.N., Afonin A.S., et al. (2022) Mid to late Holocene paleoenvironmental changes in the southern forest border of Western Siberia inferred from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 588. P. 110800. https://doi.org/10.1016/j.palaeo.2021.110800
29. Van Oldenborgh G.J., Krikken F., Lewis S. et al. (2021) Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences. Vol. 21. №. 3. P. 941-960. https://doi.org/10.5194/nhess-21-941-2021
30. Volkov E.N. (2007) K probleme izucheniye eneoliticheskikh kul'tur Tyumenskogo Pritobol'ya (The complex of archaeological sites in Ingal Valley). Novosibirsk: Nauka (Publ.). (in Russ.).
31. Wang Z., Huang J.G., Ryzhkova N. et al. (2021) 352 years long fire history of a Siberian boreal forest and its primary driving factor. Global and Planetary Change. Vol. 207. P. 103653. https://doi.org/10.1016/j.gloplacha.2021.103653
32. Zhilich S., Rudaya N., Krivonogov S. (2016) Changes in vegetation and climate in the area of Lake Malye Chany in the late Holocene. Dinamika okruzhayushchey sredy i global'nyye izmeneniya klimata. Vol. 7. №. 1 (13). P. 68-75.
33. Zhilich S., Rudaya N., Krivonogov S. et al. (2017) Environmental dynamics of the Baraba forest-steppe (Siberia) over the last 8000 years and their impact on the types of economic life of the population. Quaternary Science Reviews. Vol. 16 3. P. 152-161. https://doi.org/10.1016/j.quascirev.2017.03.022
Supplementary files
Review
For citations:
Trubitsyna E.D., Afonin A.S., Ryabogina N.E. Paleofire dynamics of the Tobol region (based on the lake-bog deposits of the Oskino peat bog). Geomorfologiya i Paleogeografiya. 2025;56(3):442-456. (In Russ.) https://doi.org/10.31857/S2949178925030062






