AN ASSESSMENT OF LOAD ON THE ARABLE SLOPES ON THE BASIS OF FIELD METHODS AND MATHEMATIC MODELS
https://doi.org/10.15356/0435-4281-2015-2-41-53
Abstract
An assessment of the sediment spatial redistribution on two facing slopes of the site Gracheva hollow (Kursk region) was fulfilled. Soil-morphologic method, magnetic tracers, radiocesium dating, LISEM, and physical-statistical empirical model were used.
By the complex of field methods related to different time intervals (150, 140, and 21 y.) regularities associated mainly with the influence of slope morphology on the sediment runoff and redeposition were obtained. On the dispersing convex slope all field methods showed wave-like alternation of the accumulation and wash-out, which manifests in and is augmented by the microrelief elements. According to the three field methods the value of the intra-slope accumulation ranges from 11% to 79% of the total dislodged material value; the mean value reaches 35% (with the use the erosion models calculations). On the straight convex slopes zones of alternation were not observed; accumulation close to slope bottom, revealed by soil-morphologic method and magnetic tracers, is connected with the changes of the low boundary of ploughing during agricultural exploitation.
The calculated rates of sediment redeposition obtained with the erosion model LISEM helped to evaluate with sufficient validity the total wash out from the slope and to determine zones of sediment redestribution along the strike of the slope. The physical-statistical model also describes well the peculiarities of this process but gives less values of intra-slope accumulation than LISEM.
About the Authors
A. P. ZhidkinRussian Federation
Geographical Department
V. N. Golosov
Russian Federation
Geographical Department
A. A. Svetlichny
Ukraine
A. V. Pyatkova
Ukraine
References
1. Abrahams A.D., Parsons A.J., Luk S.H. The effect of spatial variability in overland flow on the downslope pattern of soil loss on a semiarid hillslope, Southern Arisona. CATENA, 1991, v. 18, pp. 255–270.
2. Soil Degradation. Advanced in Soil Science. Publ, Springler-Verlag, 1990, 172 p.
3. Grigorjev V.Ya., Krasnov S.A., Kuznetsov M.S. et.al. Prognozirovanie i preduprezhdenie erozii pri oroshenii (Forecasting and prevention of erosion during irrigation). Moscow: Izd-vo MGU (Publ.), 1992, 206 p.
4. Litvin L.F. Erosion-accumulative processes on the slope micro channels. Geomorfologiya (Geomorphology RAS), 1981, no. 2, pp. 75–79 (In Russ.).
5. Golosov V.N. Erozionno-akkumulyativnye protsessy v rechnykh bassejnakh osvoennykh ravnin (Erosion-accumulative processes in the river basins of exploited plains). Moscow: GEOS (Publ.), 2006, 296 p.
6. Svitlychnyj O.O. Kilkisna otsinka kharakterystyk skhylovogo erozijnogo protsesu i pytannya optymizatsiyi vykorystannya erozijno-nebezpechnykh zemel. PhD Thesis, Odesa: Odesk. Derzh. Un-t (Publ.), 1995, 47 p.
7. Pennock D.J., Zebarth B.J., De Jong E. Landform classification and soil distribution in hummocky terrain. Saskatchewan. Canada. Geoderma, 1987, v. 40, pp. 297–315.
8. Sutherland R.A., De Jong E. Estimation of sediment redistribution within agricultural fields using caesium-137. Crystal Springs. Saskatchewan. Canada. Applied Geography, 1990, v. 10, iss. 3, pp. 205–221.
9. Polyakov V.O., Nearing M.A., Shipitalo M.J. Tracking sediment redistribution in a small watershed: implications for agro-landscape evaluation. Earth Surface Processes and Landforms, 2004, v. 29, iss. 10, pp. 1275–1291.
10. Svetlichnyj A.A., Chernyj S.G., Shvebs G.I. Eroziovedenie: teoreticheskie i prikladnye aspekty (Erosion science: theoretic and applied aspects). Sumy: ITD Universitetskaya kniga (Publ.), 2004, 410 p.
11. Lisetskiy F.N., Svetlichnyj A.A., Chernyj S.G. Sovremennye problem eroziovedeniya (Contemporary problems of erosion science). Belgorod: Konstanta (Publ.), 2012, 456 p.
12. Panin A.V., Walling D.E., Golosov V.N. Fluvial Transport Of Chernobyl 137Cs: Case Study Of The Lapky Catchment. Central Russia. Geomorphology, 2001, v. 40, pp. 185–204.
13. Verstraeten G., Poesen J. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology, 2001, v. 40. iss. 1–2. P. 123–144.
14. Golosov V.N. Special considerations for areas affected by Chernobyl fallout. Handbook for the assessment of soil erosion and sedimentation using environmental radioactivity. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2010, pp. 165–184.
15. Jones R.L., Olson K.R. Fly ash use as a time marker in sedimentation studies. Soil Sci. of America Journ., 1990, v. 54, pp. 1393–1401.
16. Hussain I., Olson K.R., Jones R.L. Erosion Patterns on Cultivated and Uncultivated Hillslopes Determined by Soil Fly Ash Contents. Soil Sci., 1998, v. 163, iss. 9, pp. 726–738.
17. Gennadiyev A.N., Chernyanskiy S.S., Kovach R.G. Spherical magnetic particles as soil microcomponents and mass-transfer tracer agents. Pochvoved., 2004, no. 5, pp. 566–580 (In Russ.).
18. Gennadiyev A.N., Zhidkin A.P., Olson K.R., Kachinskiy V.L. Soil erosion in different land tenure conditions: magnetic tracer evaluation technique. Pochvovedenie, 2010, no. 9, pp. 1126–1134 (In Russ.).
19. Zhidkin A.P. Kolichestvennaya otsenka mekhanicheskoj migratsii veschestv metodom magnitnogo trassera (Quantitative evaluation of mechanic migration of material by the magnetic tracer technique). PhD Thesis. Moscow: MGU (Publ.), 2010, 26 p.
20. Gennadiyev A.N., Zhidkin A.P. Typification of soil conflux by quantitative appearances of wash in-and-out of material. Pochvovedenie, 2012, no. 1, pp. 1–11 (In Russ.).
21. Olson K.R., Gennadiyev A.N., Zhidkin A.P. et al. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena, 2013, v. 104, pp. 103–110.
22. Ritchie J.C., McHenry J.R. Application of radioactive fallout caesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journ. Environ. Quality, 1990, v. 19, pp. 215–233.
23. Golosov V.N., Silantyev A.N., Ostrova I.V., Shkuratova I.G. Radioisotope technique of evaluation of inner-basin accumulation progress rates. Geomorfologiya (Geomorphology RAS), 1992, no. 1, pp. 30–36 (In Russ.).
24. Loughran R.J. The use of the environmental isotope caesium-137 for soil erosion and sedimentation studies. Trend in Hydrology, 1994, no. 1, pp. 149–167.
25. Higgit D.I. The Development and Application of Caesium-137 Measurements in Erosion Investigation. Sediment and Water Quality in River Catchments. Ed. By I. Foster. A. Gurnell and B.Webb. John Wiley& Sons Ltd, 1995, pp. 287–305.
26. Golosov V.N., Panin A.V., Markelov M.V. Chernobyl 137Cs Redistribution in the Small Basin of the Lokna River. Central Russia. Phys. Chem. Earth (A), 1999, v. 24, no. 10, pp. 881–885.
27. Golosov V.N., Radioisotope use within erosion-accumulation processes study. Geomorfologiya (Geomorphology RAS), 2000, no. 2, pp. 26–33 (In Russ.).
28. Walling D.E., Golosov V.N., Panin A.V., He Q. Use of radiocaesium to investigate erosion and sedimentation in areas with high levels of Chernobyl fallout. Tracers in Geomorphology, 2000, pp. 183–200.
29. Porto P., Walling D.E., Callegari G. Using 137Cs measurements to establish catchment sediment budgets and explore scale effects. Hydrological Processes, 2011, v. 25, pp. 886–900.
30. Golosov V.N., Belyaev V.R., Markelov M.V. Application of Chernobyl-derived 137Cs fallout for sediment redistribution studies: lessons from European Russia. Hydrological Processes, 2013, v. 27, no. 6, pp. 807–821.
31. Golosov V.N., Markelov M.V., Belyaev V.R., Zhukova O.M. Problems of identification of spatial heterogeneity of 137?s fallout for erosion-accumulative processes progress rates evaluation. Meteorol. Gidrol, 2008, no. 4, pp. 0–45 (In Russ.).
32. Golosov V.N., Belyaev V.R., Markelov M.V., Shamshurina E.N. Specifics of drifts redistribution on small watershed during various periods of its land cultivation (Grachyova Loschina watershed. Kursk region). Geomorfologiya (Geomorphology RAS), 2012, no. 1, pp. 25–35 (In Russ.).
33. Golosov V.N. Application of Chernobyl-derived 137Cs for assessment of soil redistribution within cultivated field. Soil and Tillage Research, 2003, v. 69, no. 1–2, pp. 85–98.
34. Svetlichny A.A. Principles of perfection of drifting empirical models. Pochvoved., 1999, no. 8, pp. 1015–1023 (In Russ.).
35. Pyatkova A.V. Просторова ГІС-реалізована модель зливового змиву-акумуляції ґрунту. Visnik ONU, Ser. Geogr. Geol., 2010, v. 15, iss. 13, pp. 162–172.
36. De Roo A.P.J., Wesseling C.G., Cremers N.H.D.T. et al. LISEM: A physically-baseed hydrological and soil erosion model incorporated in a GIS. EGIS/MARI'94 Conference Procidings. Utrecht/Amsterdam: EGIS Foundation. 1994, pp. 207–216.
37. De Roo A.P.J., Wesseling C.G., Ritserma C.J. LISEM: A single event physically-based hydrologic and soil erosion model for drainage basins. I: Theory. input and output. Hydrological Processes, 1996, v. 10, pp. 1107–1117.
38. Shvebs G.I. Formirovanie vodnoj erozii stoka nanosov i ikh otsenka (Formation of water erosion of sediment runoff and its evaluation). Leningrad: Gidrometeoizdat (Publ.), 1974, 184 p.
39. Shvebs G.I. Teoreticheskie osnovy eroziovedeniya (Theoretic base of erosion studies). Kiev-Odessa: Vischa shkola (Publ.), 1981, 223 p.
40. Pyatkova A.V. Prostorove modelyuvannya vodnoj erozii gruntu yak osnova naukovogo obgruntuvannya ratsionalnogo vikoristannya erozijno-nebezpechykh zemel). PhD Thesis. Odesa: ODEKU (Publ.), 2011, 20 p.
41. Svetlichny A.A. Mathematic modeling of water erosion: classification problem. Visnik Odeskogo natsionalnogo universitetu imeni I.I. Mechnikova, Geogr. Geol., 2010, v. 15, iss. 5, pp. 32–39.
42. Poesen J., Verstraeten G., Soenens R., Seynaeve L. Soil losses due to harvesting of chicory roots and sugar beet: an underrated geomorphic process? CATENA, 2001, v. 43, no. 1, pp. 35–47.
43. Ruysschaert G., Poesen J., Verstraeten G., Govers G. Soil losses due to mechanized potato harvesting. Soil and Tillage Research, 2006, v. 86, no. 1, pp. 52–72.
44. Litvin L.F. Geografiya erozii pochv selskokhozyajstvennykh zemel Rossii (Geography of erosion of agricultural lands of Russia). Moscow: Akademkniga, 2002, 256 p.
45. Golosov V.N., Litvin L.F. Sediment budget within cultivated slopes and slope catchments: evaluation of slope morphology influence. Sediment budget. Proceeding of Fos-Igassy Symp, IAHS Publ, 291, 2005, pp. 5–13.
Review
For citations:
Zhidkin A.P., Golosov V.N., Svetlichny A.A., Pyatkova A.V. AN ASSESSMENT OF LOAD ON THE ARABLE SLOPES ON THE BASIS OF FIELD METHODS AND MATHEMATIC MODELS. Geomorfologiya. 2015;(2):41-53. https://doi.org/10.15356/0435-4281-2015-2-41-53