Preview

Geomorfologiya i Paleogeografiya

Advanced search

Geomorphological approach to the river runoff evaluation in the geological past (Part 4. Sediment particle size analysis for the assessment of paleo-flow velocity)

https://doi.org/10.7868/S0435428118030045

Abstract

The texture and structure of the alluvial deposits are the reflection of the dynamics of the river flow. The texture of the modern river alluvium is used as a measure of the velocity field in the river channel. The formulas for the calculation of the critical flow rate for the conditions of the beginning of the movement or the beginning of the deposition of particles of varying size are used for this purpose. Significant development of the theory and experimental verification of such formulas gives an opportunity for reconstruction paleo­flow velocity by measuring the size of particles in alluvial deposits. This procedure is supported by non­linearity of the relationship between critical velocities and diameters of the soil particles. A wide range of particle sizes is transformed into rather narrow range of flow rates, necessary for movement of these particles. As the result, with the correct assessment of the particular dynamic conditions of formation of the alluvial strata and efficient selection of alluvium samples, the average paleo­flow rate and (in some cases) the intensity of its turbulence can be estimated.

The methods of calculating the critical velocities provide a range of values, typically ±20–30% of the mean. Another significant limitation of this method is the lack of ability to determine other flow and channel characteristics by the use of the size of alluvium. The flow depth, which is required for correct calculation of the velocity, must be determined from the other characteristics, such as the structure of the alluvium, geometry of paleochannels, and etc. Therefore an evaluation of flow rate by alluvium size is usually complements and refines paleogeomorphological and paleohydrological reconstructions, performed by other methods.

About the Authors

A. Yu. Sidorchuk
Lomonosov Moscow State University, Moscow
Russian Federation
Faculty of Geography


A. V. Panin
Lomonosov Moscow State University, Faculty of Geography, Moscow; Institute of Geography RAS, Moscow
Russian Federation


References

1. Jopling A.V. Some procedures and techniques used in reconstructing the hydraulic parameters of a paleoflow regime. Journal of Sedimentary Petrology. 1966. No. 36. P. 5–49.

2. Ethridge F.G. and Schumm S.A. Reconstructing paleochannel morphology and flow characteristics: methodology, limitations, and assessment, in Fluvial sedimentology. A. D. Miall. Ed. Canadian Society Petroleum Geologists Memoir. 1978. Vol. 5. P. 703–722.

3. Maizels J.K. Palaeovelocity and palaeodischarge determination for coarse gravel deposits, in Background to paleohydrology: A Perspective. K.J. Gregory, Ed. New York: John Wiley and Sons. 1983. P. 101–139.

4. Shamov G.I. Rechnye nanosy (River sediments). Leningrad: Gidrometeoizdat (Publ.), 1954. 346 p.

5. Lokhtin V.M. O mekhanizme rechnogo rusla (On the mechanics of the river channel). S.­Petersburg: Min. putei soobshcheniya (Publ.), 1897. 77 p.

6. Velikanov M.A. Dinamika ruslovykh potokov (Channel­flow dynamics). vol. II. Nanosy i ruslo (Sediments and channel). Moscow: Gostekhizdat (Publ.), 1955. 323 p.

7. Yang C.T.Sediment Transport: Theory and Practice. N.­Y.: The McGraw­Hill Co., 1996. 396 p.

8. Goncharov V.N.Osnovy dinamiki ruslovykh potokov (Fundamentals of channel­flow dynamics). Leningrad: Gidrometeoizdat (Publ.), 1954. 452 p.

9. Grishanin K.V.Dinamika ruslovykh potokov (Channel­flow dynamics). 2­nd edition. Leningrad: Gidrometeoizdat (Publ.), 1979. 312 p.

10. Mirtskhulava Ts.E.Inzhenernye metody rascheta i prognoza vodnoi erozii (Engineering methods of calculation and prediction of water erosion). Moscow: Kolos (Publ.), 1970. 240 p.

11. Gessler J. Self­stabilizing tendencies of alluvial channels. Proc. ASCE. 1970. Vol. 96(WW2). P. 235–249.

12. Grinvald D.I. and Nikora V.A.Rechnaya turbulentnost’(River turbulence). Leningrad: Gidrometeoizdat (Publ.), 1988. 152 p.

13. Kolmogorov A.N. About a logarithmically normal distribution of particles during the fragmentation. Dokl. Akad. Nauk SSSR. 1941. Vol. 31. No. 2. P. 99–101. (in Russ.)

14. Hjulström F. Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institute, University of Uppsala. 1935. Vol. 25. P. 221–527.

15. http://www.fluvial­systems.net/geomorfologiya_2016/supplement4.html

16. Lodina R.V., Rashutin D.V., Sidorchuk A. Yu., and Chalov R.S. Changing in channel morphology and channel­forming sediments from the river head to the mouth: the Terek River case study. Geomorfologiya (Geomorphology RAS). 1987. No. 1. P. 86–94. (in Russ.)

17. Korotayev V.N., Lodina R.V., Miloshevich V.A., Sidorchuk A. Yu., and Chalov R.S. Delta formation of the Yana River and prognosis of its mouth bars development, in Eroziya pochv i ruslovye protsessy (Soil erosion and channel processes). Iss. 6. Moscow: Izd­vo MGU (Publ.), 1978. P. 123–159.

18. Sidorchuk A. Yu. Bed­form dynamics in the Nizhne­Sheshurovski shallows of the Vychegda River. Meteorol. Gidrol. 2000. No. 4. P. 94–102. (in Russ.)

19. Sidorchuk A. Yu. Morphology and dynamics of channel relief in the Lower Niger, in Problemy morfodinamiki(Problems of morphodynamics). Moscow: GO SSSR (Publ.), 1983. P. 21–38.

20. Alekseevskiy N.I., Belyi B.V., Berkovich K.M., Ivanov V.V., Nikitina L.N., Turykin L.A., Chalov R.S., and Chernov A.V. Channel processes in the upper Chulym River under the influence of channel quarries, in Eroziya pochv i ruslovye protsessy (Soil erosion and channel processes). Iss. 10. Moscow: Izd­vo MGU (Publ.), 1995. P. 143–157.

21. Karaushev A.V. Teoriya i metody rascheta rechnykh nanosov(The theory and methods of river sediments calculation). Leningrad: Gidrometeoizdat (Publ.), 1977. 271 p.

22. Rossinskiy K.I. and Debolski V.K. Rechnye nanosy(River Sediments). Moscow: Nauka (Publ.), 1980. 216 p.

23. Alekseevskiy N.I. and Sidorchuk A. Yu. Morphology and dynamics of channel relief in Terek lower reaches, in Zemel’nye i vodnye resursy (Land and Water Resources). Moscow: Izd­vo Mosk. un­ta (Publ.), 1990. P. 87–95.

24. Snishchenko B.F. Paired relationships between parameters of sand waves and characteristics of the flow and channel. Tr. GGI. 1983. Vol. 288. P. 15–25 (in Russ.).

25. Nagaitsev B.M. Volga boulder, sand and gravel quarry, inAlluviy(Alluvium). Inter­Univ. Proc. Perm’: Permskii un­t (Publ.), 1980. P. 101–113.

26. Sidorchuk A. Yu. and Panin A.V. Geomorphological approach to the river runoff evaluation in the geological past. Part 1. Regime equations. Geomorfologiya (Geomorphology RAS). 2017. No. 1. P. 55–65. (in Russ.)

27. Sidorchuk A. Yu. and Panin A.V. Geomorphological approach to the river flow evaluation in the geological past. Part 2. Hydraulic methods of paleoriver discharge reconstruction. Geomorfologiya (Geomorphology RAS). 2017. No. 2. P. 3–13. (in Russ.)

28. Sidorchuk A. Yu., Panin A.V., Borisova O.K., and Eremenko E.A. Geomorphological approach to the river flow evaluation in the geological past. Part 3. Drainage net structure analysis. Geomorfologiya (Geomorphology RAS). 2018. No. 1. P. 18–32. (in Russ.)


Review

For citations:


Sidorchuk A.Yu., Panin A.V. Geomorphological approach to the river runoff evaluation in the geological past (Part 4. Sediment particle size analysis for the assessment of paleo-flow velocity). Geomorfologiya. 2018;(3):40-51. (In Russ.) https://doi.org/10.7868/S0435428118030045

Views: 291


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)