Mathematical modeling of the development of the long profile of a deluvial slope
https://doi.org/10.31857/S0435-42812019159-65
Abstract
About the Authors
A. N. SaluginRussian Federation
Volgograd
A. V. Kulik
Russian Federation
Volgograd
References
1. Trofimov A.M. Matematicheskoe modelirovanie v geomorfologii sklonov (Mathematical modeling in slope geomorphology). Kazan: Kaz. Un-t (Publ.), 1983. 218 p.
2. Garshinev E.A. Jerozionno-gidrologicheskij process i lesomelioracija (The erosional and hydrological process and the forest improvement). Volgograd: VNIALMI (Publ.), 1999. 196 p.
3. Goncharov V.N. Osnovy dinamiki ruslovyh potokov (The basics of dynamics of open surface channels). Leningrad: Gidrometeoizdat (Publ.), 1954. 452 p.
4. Pozdnjakov A.V. Dinamicheskoe ravnovesie v rel'efoobrazovanii (Dynamic equilibrium in the morphogenesis). Moscow: Nauka (Publ.), 1988. 208 p.
5. Nesterenko Ju.M., Bondarenko I.I., Nesterenko M.Ju., and Vlackij V.V. Mathematical model of surface runoff formation and its program realization. Vest. Orenb. Univ. 2010. No. 10 (116). P. 131–137. (in Russ.)
6. Rulev A.S. and Juferev V.G. Mathematical and geomorphological modeling of the erosion landscapes. Geomorfologiya (Geomorphology RAS). 2016. No. 3. P. 36–45. (in Russ.)
7. Kulik K.N., Salugin A.N., and Garshinev E.A. Mathematical modelling processes of erosion soils. Russ. Agric. Sci. 2004. No. 6. P. 33–36. (in Russ.)
8. Salugin A.N. Behavior of nonequilibrium arid ecosystems and its prediction. Ecologiya. 2007. No. 4. P. 41–45. (in Russ.)
9. Salugin A.N. and Salugina L.N. Matematicheskaja jekologija sklonovyh system (Mathematical ecology of slope systems). Volgograd: VolgGASU (Publ.), 2007. 112 p.
10. Hirano M. Green's Function of Mass Transport and the Landform Equation. Concepts and Modelling in Geomorphology: International Perspectives. Tokyo, 2003. P. 101–114.
11. Culling W.E.H. Soil creep and the development of hillside slopes. J. Geol. 1963. Vol. 71. No. 2.
12. Prigozhin I. Ot sushhestvujushhego k voznikajushhemu: Vremja i slozhnost' v fizicheskih naukah (From Being to Becoming: Time and Complexity in the Physical Sciences). Ju.L. Klimontovich. Ed. Moscow: Nauka (Publ.), 1985. 327 p.
13. Tihonov A.N. and Samarskij A.A. About uniform differential schemes. Zhur. Vych. Mat. i Mat. Fiz. 1961. Vol. l. No. 1. P. 55–63. (in Russ.)
14. Ljather V.M. and Prudovskij A.M. Gidravlicheskoe modelirovanie (Hydraulic modeling). Moscow: Energoatomizdat (Publ.), 1984. 392 p.
15. Devdariani A.S. Matematicheskij analiz v geomorfologii (The mathematical analysis in geomorphology). Moscow: Nauka (Publ.), 1967. 156 p.
16. Hirano M. Quantitative morphometry of fault with reference to the Hira Mountains, Central Japan. Jap. Geol. and Geogr. 1972. Vol. 42. No. 1–4. P. 85–100.
17. Bahvalov N.S. Chislennye metody (Numerical methods). Moscow: Nauka (Publ.), 1987. 48 p.
Review
For citations:
Salugin A.N., Kulik A.V. Mathematical modeling of the development of the long profile of a deluvial slope. Geomorfologiya. 2019;(1):59-65. (In Russ.) https://doi.org/10.31857/S0435-42812019159-65