Postglacial seismogenic deformations of an esker in the Northern Karelian Isthmus (South-East Fennoscandia)
https://doi.org/10.31857/S0435-42812019319-35
Abstract
The research area is located in the Northern part of the Karelian Isthmus between Lake Ladoga and the Gulf of Finland of the Baltic Sea. The terrain features are closely related to the tectonic structure of the crystalline basement, partially covered with thin deposition layer of the Last Glaciation and Holocene mostly. Accumulative forms are rarely but strongly correlated with the tectonic structure also. Most expressive features of accumulative topography are esker ridges that stretch for tens of kilometers. Analysis of eskers spatial distribution shows their close connection with the structural plan of the crystalline basement. One of the ridges under study was described in three sections where a lot of deformations in soft sediments, accompanied by deformations of the esker’s topography (in one case) were found. The nature and stratigraphic position of deformations indicates their appearance during the period of existence of the Baltic Ice Lake after the retreat of the ice sheet. Post-sedimentary deformations were accompanied by partial re-deposition of sedimentary strata. Deformations are represented by several types and generations. The ensembles of faults and fold deformations in the esker deposition kinematically connected with each other and coinciding along the strike with the structural lineaments demonstrate the influence of the activated tectonic structure to the formation of the sedimentary cover. The conjugation of normal and thrust faults, the presence of several “event horizons” with traces of liquefaction testify to the seismotectonic genesis of deformations and several strong earthquakes that occurred at different stages of the existence of the Baltic Ice Lake in the period 13.0–11.6 thousand years BP.
About the Author
S. V. ShvarevRussian Federation
Moscow.
References
1. Niemela J., Ekman I., Lukashov A. (Eds.) 1993. Quaternary deposits of Finland and northwestern part of Russian Federation and their resources. Scale 1:1 000 000. Geological Survey of Finland and Russian Academy of Science, Institute of Geology, Petrozawodsk.
2. Stroeven A. P., Hättestrand C., Kleman J., Heyman J., Fabel D., Fredin O., Goodfellow B. W., Harbor J. M., Jansen J. D., Olsen L., Caffee M. W., Fink D., Lundqvist J., Rosqvist G. C., Strömberg B., and Jansson K. N. Deglaciation of Fennoscandia. Quaternary Sci. Rev. 2015. Vol. 147. P. 21-91. https://doi.org/10.1016/j.quascirev.2015.09.016
3. Huuppä E. Saarnas uppstrom structura. Geologi. 1954. 6. P. 45-50.
4. Biske G. S., Lak G. C., Lukashov A. D., Gorjunova N. N., and Il’in V. A. Stroenie i istoriya kotloviny Onezhskogo ozera (The structure and history of the basin of Lake Onega). Petrozavodsk: Karelia, 1971. 73 p. (in Russ.)
5. Biske G. S., Il’in V. A., and Lukashov A. D. Vliyanie tektonicheskih faktorov na formirovanie vodno-lednikovyh kompleksov (na primere Karelii) (The influence of tectonic factors on the formation of fluvioglacial complexes (the case of Karelia). Priroda i hozyajstvo Severa. Vyp. 4. Murmansk. 1976. P. 15-18. (in Russ.)
6. Il’in V. A. and Lak G. C. Tipy ozovyh obrazovanij v yuzhnoj Karelii (Types of esker forms in South Karelia). Chetvertichnaya geologiya i geomorfologiya vostochnoj chasti Baltijskogo shchita. L.: Nauka, 1972. P. 24-31. (in Russ.)
7. Ruhina E. V. Litologiya lednikovyh otlozhenij (Lithology of glacial sediments). L.: Nauka, 1973. 174 s. (in Russ.)
8. Chuvardinskij V. G. Neotektonika Vostochnoj chasti Baltijskogo shchita (Neotectonics of the eastern part of the Baltic shield). Apatity: Izd. KNC RAN, 2000. 287 p. (in Russ.)
9. Chuvardinskij V. G. K voprosu o tektonicheskom proiskhozhdenii ozov (More on the tectonic genesis of eskers). Priroda i hozyajstvo Severa. Murmansk. 1986. Vyp.14. P. 6-13.
10. Hambrey M. J. and Glasser N. F. Glacial sediments: processes, environments and facies. In: Middleton, G. V. (Ed.), Encyclopedia of Sediments and Sedimentary Rocks. Kluwer, Dordrecht. P. 316-331. https://doi.org/10.1007/3-540-31079-7_99
11. Lundqvist J. Palaeoseismicity and De Geer Moraines. Quaternary International 68 (71), 175-186. https://doi.org/10.1016/s1040-6182(00)00042-2
12. Mörner N.-A., Somi E., Zuchiwich W. Neotectonics and Paleoseismicity within the Stockholm intracratonal region in Sweden. Tectonophysics. 1989. Vol. 163. Issue 3-4. P. 289-303. https://doi.org/10.1016/0040-1951(89)90264-3
13. Mörner N.-A. Paleoseismicity of Sweden — A Novel Paradigm. ISBN-91-631-4072-1. A contribution to INQUA from its Sub-commission on Paleoseismology. P&G-unit, Stockh. Univ., Stochkholm. 320 p.
14. Mörner N.-A. Liquefaction and varve deformation as evidence of paleoseismic events and tsunamis. The autumn 10,430 BP case in Sweden. Quaternary Sci. Rev. 1996. 15, 939-948.
15. Gruszka B. and Van Loon A. J. Genesis of a giant gravity-induced depression (gravifossum) in the Enkoping esker, S. Sweeden. Sedimen. Geol. 2011. Vol. 235. P. 304-313. https://doi.org/10.1016/j.sedgeo.2010.10.004
16. Mörner N.-A. Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophysics. 2004. 380 (3-4). P. 139-157. https://doi.org/10.1016/j.tecto.2003.09.018
17. Mörner N.-A. An interpretation and catalogue for paleoseismicity in Sweden. Tectonophysics. 2005. 408. 265-307. https://doi.org/10.1016/j.tecto.2005.05.039
18. Gruszka B., Mochtari Fard A., and van Loon A. J. A fluctuating ice front over an esker near Ryssjön (S Sweden) as a cause of a giant load cast. Sedimentary Geology. 2016. Vol. 344. P. 47-56. https://doi.org/10.1016/j.sedgeo.2016.06.018
19. Afanasov M. N., red. Shul’diner V. I. Gosudarstvennaya geologicheskaya karta RF. Seriya Karel’skaya. M-b 1:200 000. List R-35-XXIX, XXX. Dochetvertichnye obrazovaniya. (State geological map of the Russian Federation. Karelian series. Scale 1: 200 000. Sheet R-35-XXIX, XXX). Avtor Utverzhden NRS VSEGEI 09.06.1999. SPb., 1999.
20. Konopelko D. and Eklund O. Timing and geochemistry of potassic magmatism in the eastern part of the Svecofennian domain, NW Ladoga Lake Region, Russian Karelia. Precambrian Research. 2002. 120. P. 37-53. https://doi.org/10.1016/s0301-9268(02)00141-9
21. Arhangel’skaya G. A. and Gostinceva V. B. Gipsometricheskaya karta poverhnosti dochetvertichnyh otlozhenij. Maschtab 1:500 000. Red. Aleksandrova T. V. (Elevation map of the pre-Quartenary sediments roof. Scale 1:500 000. Ed. Aleksandrova T. V.). Otchet po teme: Sostavlenie geologicheskih kart masshtaba 1:500 000 Leningradskoj, Pskovskoj, Novgorodskoj i Vologodskoj oblastej. SZTGU, Leningrad, 1974. (in Russ.)
22. Stroeven A. P., Heyman J., Fabel D., Björck S., Caffee M. W., Fredin O., and Harbor J. M. A new Scandinavian reference 10Be production rate. Quaternary Geochronology. 2015. Vol. 29. P. 104-115. https://doi.org/10.1016/j.quageo.2015.06.011
23. Saarnisto M. and Saarinen T. Deglaciation chronology of the Scandinavian Ice Sheet from the Lake Onega Basin to the Salpausselkä End Moraines. Global and Planetary Change. 2001. 31, P. 387-405. https://doi.org/10.1016/s0921-8181(01)00131-x
24. Eronen M. Geologinen kehitys jääkauden lopussa ja sen jälkeen. Teoksessa: P. Alalammi (toim.). Suomen kartasto. Maanmittaushallitus & Suomen maantieteellinen seura. Vihko. 1990. 123-126. Geologia. S. 14-18.
25. Jantunen T. Muinais-Itämeri. Teoksessa: M. Koivisto (toim.). Jääkaudet. 2004. S. 63-68.
26. Vassiljev J. and Saarse L. Timing of the Baltic Ice Lake in the eastern Baltic. Bulletin of the Geological Society of Finland. 2013. Vol. 85. P. 9-18. https://doi.org/10.17741/bgsf/85.1.001
27. Bjork S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quaternary int. 1995. Vol. 27. P. 19-40.
28. Andrén T., Andrén E., Berglund B. E., and Yu S.-Y. New insights on the Yoldia Sea low stand in the Blekinge archipelago, southern Baltic Sea. GFF. Stockholm, 2007. Vol. 129. P. 277-285. https://doi.org/10.1080/11035890701294277
29. Andrén T., Björck S., Andrén E., Conley D., Zillén L., and Anjar J. The Development of the Baltic Sea Basin During the Last 130 ka. The Baltic Sea Basin. Harff J., Björck S., Hoth P. Ed. Berlin Heidelberg: Springer-Verlag, 2011. P. 449. S. 75-97. ISBN 978-3-642-17220-5.
30. Subetto D. A. Istoriya formirovaniya Ladozhskogo ozera i ego soedineniya s Baltijskim morem (The history of formation of the Ladoga Lake and its connection to the Baltic Sea) // Obshchestvo. Sreda. Razvitie (Terra Humana). Nauchno-teoreticheskij zhurnal. SPb.: Asterion, 2007. No. 1. S. 111-120. ISSN 1997-5996 (in Russ.)
31. Nikonov A. A., Belousov T. P., Denisova E. A., Zykov D. S., and Sergeev A. P. Deformacionnye struktury v pozdnelednikovyh otlozheniyah na Karel’skom pereshejke: morfologiya, kinematika, genezis (Deformation structures in the postglacial sediments of the Karelian Isthmus: morphology, cinematics, genesis). Materialy XXXIV Tektonicheskogo soveshchaniya (30 yanvarya-3 fevralya 2001 g.) Tektonika neogeya: obshchie i regional’nye aspekty. T. 2. M.: GEOS, 2001. S. 83-86. (in Russ.)
32. Nikonov A. A., Shvarev S. V., Sim L. A., Rodkin M. V., Biske J. S., and Marinin A. V. Skal’nye paleosejsmodeformacii na Karel’skom pereshejke (klyuchevoj uchastok “Peshchery Inostranceva”, Leningradskaya oblast’) (Bedrock paleoseismic deformations of the Karelian Isthmus (key site “Inostrantsev cave”, Leningrad Region). Doklady Akademii nauk. 2014. T. 457. S. 591-596. (in Russ.)
33. Nedrigajlova I. S. Gosudarstvennaya geologicheskaya karta RF. Seriya Karel’skaya. M-b 1:200 000. List R-35-XXIV, XIX. Chetvertichnye otlozheniya. Red. Golovyonok V. K. (State geological map of the Russian Federation. Karelian series. Scale 1:200 000. Sheet R-35-XXIV, XIX. Quartenary sediments. Ed. Golovyonok V. K.) Utverzhden NRS VSEGEI 15.12.1977. SPb.: VSEGEI, 1980. (in Russ.)
34. Saarnisto M. The Late Weichselian and Flandrian History of the Saimaa Lake Complex. Commentationes Physico-Mathematicae, Societas Scientiarum Fennica. 1970. 37. 107 p.
35. Shvarev S. V., Subetto D. A., Nikonov A. A., Zaretskaja N. E., Poleshchuk A. V., and Potakhin M. S. O svyazi katastroficheskih izmenenij gidrograficheskoj seti Karel’skogo pereshejka v golocene s sil’nymi zemletryaseniyami (About the relationship of catastrophic changes in the hydrographic network of the Karelian Isthmus in the Holocene with strong earthquakes). Kul’turnye processy v cirkumbaltijskom prostranstve v rannem i srednem golocene: Doklady mezhdunarodnoj nauchnoj konferencii, posvyashchennoj 70-letiyu so dnya rozhdeniya V. I. Timofeeva [otv. red. D. V. Gerasimov]. Saint Petersburg: MAE RAN, 2017. С. 17-21. (in Russ.)
36. Subetto D. A., Shvarev S. V., Nikonov A. A., Zaretskaja N. E., Poleshchuk A. V., and Potakhin M. S. Catastrophic changes of the Karelian Isthmus hydrographic network in the Late Glacial — Holocene: palaeoseismological origin // From past to present — Late Pleistocene, last deglaciation and modern glaciers in the centre of northern Fennoscandia. Edited by Pertti Sarala and Peter Johansson. Geological Survey of Finland Rovaniemi. 2017. P. 156-157.
37. Guerrieri L. and Vitori E. Eds. Environment Seismic Intensity Scale 2007-ESI 2007, Memoria Descrittive della carta Geologica d’Italia. 2007. Vol. 74. Servizio Geologico d’Italia-Dipartimento Difesa del Suolo, APAT, Roma, Italy, 54 p.
Review
For citations:
Shvarev S.V. Postglacial seismogenic deformations of an esker in the Northern Karelian Isthmus (South-East Fennoscandia). Geomorfologiya. 2019;(3):19-35. (In Russ.) https://doi.org/10.31857/S0435-42812019319-35