Modeling the dynamics of a sand beach governed by the wave and underwater bar interaction
https://doi.org/10.31857/S0435-42812019357-67
Abstract
Effect of bar position on underwater profile of sandy beach was studied at the timescale of one storm using the xBeach numerical model. Beach profiles were extracted from the bathymetry of the Shkorpilovtsy beach (the Bulgarian coast of the Black Sea). Computed results were verified by field measurements. The largest shoreline retreat occurred in the first hour of a storm. For the chosen wave regime (largest wave height 1.5 m, wave period 10.5 s), an equilibrium profile was formed after 6 hours. The resulting profile contained an underwater terrace with the slope close to that of the theoretical equilibrium profile. It was shown that the position of the underwater bar affects the shoreline retreat rate. The smallest and the largest shore retreat occur if bar crest is located at a distance about 0.7–0.8 and 0.5 of the deep water wavelength, correspondingly. It was found that the shoreline retreat depends on the height of infragravity waves and mean wave period: the smaller mean wave period and the higher infragravity waves near the coast, the smaller is the retreat of the coastal line. Distance of seaward sediment transfer is directly relates to the height of large waves near the shore.
About the Authors
O. A. KuznetsovaRussian Federation
Moscow.
Ya. V. Saprykina
Russian Federation
Moscow.
References
1. Leont’ev O. K. Morskaja geologija (Osnovy geologii i geomorfologii Mirovogo okeana) (Marine Geology (Fundamentals of Geology and Geomorphology of the World Ocean)). Moscow: Vysshee obrazovanie (Publ.), 1982. 344 p.
2. Boldyrev V. L. A complex of features characterizing the change in the capacity of the alongshore sand sediment flow, in Razvitie morskih beregov v uslovijah kolebatel’nyh dvizhenij zemnoj kory (The development of the coast in the conditions of oscillatory movements of the earth’s crust.). Tallin: Valgus, (Publ.) 1966. 242 p.
3. Masselink G., Austin M., Scott T., Poate T., and Russell P. Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, micro-tidal beach. Geomorphology. 2014. Vol. 226. P. 76-93.
4. Leont’ev I. O. Morfodinamicheskie processy v beregovoj zone morja (Morphodynamics of sea coastal zone). LAP Lambert Academic Publishing, 2014. 260 p.
5. Zenkovich V. P. Osnovy uchenija o razvitii morskih beregov (Fundamentals of seashores development). Moskva: Izd-vo AN SSSR (Publ.), 1962. 710 p.
6. Dolotov Ju. S. Dinamicheskie obstanovki pribrezhno-morskogo rel’efoobrazovanija i osadkonakoplenija (Dynamic conditions of coastal-sea relief formation and sedimentation). Moskva: Nauka (Publ.), 1989. 269 p.
7. Ingl Dzh. Dvizhenie pljazhevyh peskov (issledovanija s pomoshh’ju ljuminescentnyh indikatorov) (The beach sand movement (studies using fluorescent indicators)). Leningrad: Gidrometeorol. Izd-vo (Publ.), 1971. 225 p.
8. Kutyrev Je. I. Uslovija obrazovanija i interpretacii kosoj sloistosti (Conditions for the formation and interpretation of oblique lamination). Leningrad: Nedra (Publ.), 1968. 128 p.
9. Wijnberg K. M. and Kroon A. Barred beaches. Geomorphology. 2002. No. 48 (2002). P. 103-120.
10. Ruessink B. G., Wijnberg K. M., Holman R. A., Kuriyama Y., van Enckevort I. M. J. Intersite comparison of interannual nearshore bar behaviour. Journal of geophysical research. 2003. Vol. 108. No. C8. P. 3249. DOI:10.1029/2002JC001505
11. Zenkovich V. P. Morfologija i dinamika sovetskih beregov Chernogo morja. Tom 1. (Morphology and dynamics of the Soviet Black Sea shores of the. V.1). Moskva: Izd-vo AN SSSR (Publ.), 1958. 187 p.
12. Grasso F., Michallet H., Certain R., E. Barthélemy. Experimental flume simulation of sandbar dynamics. Journal of coastal research. 2009. SI 56. Vol. I. P. 54-58.
13. Saprykina Y., Kuznetsov S., and Korzinin D. Nonlinear transformation of waves above submerged structures. Procedia Engineering. 2015. Vol. 116 (1). P. 187-194.
14. Cheng J., Wang P., Smith E. R. Hydrodynamic conditions associated with an onshore migrating and stable sandbar. Journal of Coastal Research. 2016. Vol. 32. I. 1. P. 153-163.
15. Saleh Salem A., Jarno-Druaux A., and Marin F. Physical modelling of cross-shore beach morphodynamics under waves and tides. Journal of Coastal Research. 2011. SI 57. P. 139-143.
16. Leont’ev I. O. Pribrezhnaja dinamika: volny, techenija, potoki nanosov (Coastal dynamics: waves, currents, sediment flows). Moskva: GEOS (Publ.), 2001. 272 p.
17. Proektirovanie morskih beregozashchitnyh sooruzhenij (Design of offshore protective structures) SP 32-103-97, Korporaciya “TRANSSTROJ”, Moscow, 1998.
18. Roelvink D., Reniers A., van Dongeren A., van Thiel de Vries J., McCall R., and Lescinski J. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering. 2009. Vol. 56 (11-12). P. 1133-1152.
19. Hasselmann K., Barnett T. P., Bouws E., Carlson H., Cartwright D. E., Enke K., Ewing J. A., Gienapp H., Hasselmann D. E., Kruseman P., Meerburg A., Mller P., Olbers D. J., Richter K., Sell W., and Walden H. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe. 1973. Vol. 8 (12). P. 1-95.
20. Naumova V. A., Evstigneev M. P., Evstigneev V. P., and Ljubarec E. P. Wind-wave conditions of Azov-and-Black Sea coast of Ukraine. Nauk. pracі UkrNDGMІ. 2010. Vol. 259. P. 263-283. (in Russ.)
21. Spravochnye dannye po rezhimu vetra i volnenija Baltijskogo, Severnogo, Chernogo, Azovskogo i Sredizemnogo morej (Information on wind-wave regime of Baltic, North, Black, Asov and Mediterranean Seas). Lopatuhin L. I. Ed. S.Pb.: Rossijskij Morskoj Registr Sudohodstva (Publ.), 2006, 452 p.
22. Coastal Engineering Manual. U. S. Army Corps of Engineers. Engineer Manual 1110-2-1100, U. S. Army Corps of Engineers, Washington, D. C. (in 6 volumes), 2002.
23. Kuznetsova O. A., Saprykina Ja. V., and Trifonova E. V. Jeksperimental’nye issledovanija vlijanija volnenija na deformacii rel’efa dna beregovoj zony (Experimental research of wave impact on coastal relief deformation). Processy v geosredah. 2015. No. 2 (2). P. 66-74. (in Russ.)
24. Dean R. G. Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research. 1990. Vol. 7 (1). P. 53-84.
Review
For citations:
Kuznetsova O.A., Saprykina Ya.V. Modeling the dynamics of a sand beach governed by the wave and underwater bar interaction. Geomorfologiya. 2019;(3):57-67. (In Russ.) https://doi.org/10.31857/S0435-42812019357-67