Preview

Geomorfologiya i Paleogeografiya

Advanced search

New Challenges of Geomorphometry and Automatic Morphological Classifications in Geomorphology

https://doi.org/10.31857/S043542812001006X

Abstract

Despite the rapid development of computational technologies and methods and the increasing number of publications related to the geomorphometric analysis of terrain, no summaries in this branch of geomorphology were created in the last decade. In the “Russian-language” articles and books in geomorphometry this problem is especially relevant. Sometimes, geomorphometry has become regarded as a semi-marginal discipline which has no real importance for studying of landforms. The list of the main drags for thegeomorphometric analysis development is given in the article: geomorphological convergence and homology, not-interpretability of complex statistical models, slight representativeness of common metrics for automatictracing of geomorphological boundaries, and so on. The possible solutions of these problems on the way to the morpho-chrono-genetic mapping of landforms are scheduled. A short review is provided of clustering, classification, computer vision and pattern recognition, development and using of unusual geomorphometric variables. The article encourages geomorphologists to intensify their efforts (and to lead the researches if possible) in these four thematic directions to prevent the proceeding separation of traditional geomorphology and geomorphometry.

About the Author

S. V. Kharchenko
Lomonosov Moscow State University, Faculty of geography; Institute of Geography, RAS
Russian Federation
Moscow


References

1. Borsuk O.A., Spasskaya I.I. Mathematical methods in geomorphology, in Teoreticheskie i obshchie voprosy geografii (Theoretical and general issues of geography). Vol. 1. Moscow: VINITI (Publ.), 1974. P. 65–153. (in Russ.)

2. Simonov Yu.G. Regionalnyi geomorfologicheskii analiz (Regional geomorphological analysis). Moscow: Izd-vo Moskovskogo universiteta (Publ.), 1972. 251 p. (in Russ.)

3. Simonov Yu.G. Morfometricheskii analiz rel’efa (Geomorphometric analysis of terrain). MoscowSmolensk: Izd-vo SGU (Publ.), 1998. 272 p. (in Russ.)

4. Simonov Yu.G. Ob''yasnitelnaya morfometriya rel’efa (Explanational geomorphometry). Moscow: GEOS (Publ.), 1999. 251 p. (in Russ.)

5. Lastochkin A.N. Morfodinamicheskii analiz (Geomorphodynamical analysis). Leningrad: Nedra (Publ.), 1987. 256 p. (in Russ.)

6. Lastochkin A.N. Obshchaya teoriya geosistem (The general theory of geosystems). Sankt-Peterburg: Lema (Publ.), 2011. 980 p. (in Russ.)

7. Geomorphometry: Concepts, Software, Applications. Hengl T. and Reuter H.I. Ed. Amsterdam: Elsevier Science, 2009. 765 р.

8. Doornkamp J.C. and King C.A.M. Numerical analysis in geomorphology: an introduction. Nottingham: Edward Arnold, 1970. 385 p.

9. Spatial Analysis in Geomorphology. R.J. Chorley. Ed. London: Methuen & Co Ltd, 1972. 394 p.

10. Scheidegger A.E. Theoretical Geomorphology. Heidelberg: Springer-Verlag, 1961. 346 p.

11. Krumbein W.C. and Graybill F.A. An Introduction to Statistical Models in Geology. McGraw Hill, 1965. 475 p.

12. Florinsky I.V. Digital Terrain Analysis in Soil Science and Geology. Amsterdam: Elsevier / Academic Press, 2016. 486 p.

13. Koshkarev A.V. Data sources for digital terrain modeling in geomorphological researches, in Materialy XXXVI Plenuma Geomorfologicheskoi komissii RAN (Proceedings of XXXVI Plenum of the Geomorphological Committee of RAS). Barnaul: Izd-vo Alt. un-ta (Publ.), 2018. P. 201–207. (in Russ.)

14. Voskresenskij S.S. Geomorfologiya SSSR (Geomorphology of USSR). Moscow: Vysshaya shkola (Publ.), 1968. 372 p. (in Russ.)

15. Martonn E. Osnovy fizicheskoi geografii. T. II. Geomorfologiya (Basics of physical geography. Vol. 2. Geomorphology). Moscow: Gos. uch.-ped. izd-vo (Publ.), 1954. 556 p. (in Russ.)

16. Xejfec B.S. Approksimirovanie topograficheskoj poverxnosti ortogonalnymi mnogochlenami P.L. Chebysheva. Izvestiya vysshikh uchebnykh zavedenii. Geodeziya i aerofotos''emka (Bulletin of High School. Geodesy and aerophotography). 1964. No. 2. P. 78–86. (in Russ.)

17. Strugackij A.N. and Strugackij B.N. Polden, XXII vek (Vozvrashchenie) (Noon: 22 nd Century). Moscow: Det. lit. (Publ.), 1967. 320 p. (in Russ.)

18. Nikolenko S.I., Kadurin A.A., and Arxangelskaya E.O. Glubokoe obuchenie. Pogruzhenie v mir neironnykh setei (Deep learning. Dive into the world of neural networks). Sankt-Peterburg: Piter (Publ.), 2018. 480 p. (in Russ.)

19. Phillips J. and O’Toole A.J. Comparison of human and computer performance across face recognition experiments. Image and Vision Computing. 2014. Vol. 32. Iss. 1. P. 74–85.

20. Phillips P.J., Yates A.N., Hu Y., Hahn C.A., Noyes E., Jackson K., Cavazos J.G., Jeckeln G., Ranjan R., Sankaranarayanan S., and Chen J.C. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences. 2018. P. 201721355.

21. Bojarski M., Del Testa D., Dworakowski D., Firner B., Flepp B., Goyal P., Jackel L. D., Monfort M., Muller U., and Zhang X. End to End Learning for Self-Driving Cars [Electronic source]. Access way: https://arxiv.org/abs/1604.07316. Access date: December 1 2018.

22. Anan’yev G.S., Andreeva T.S., Varushchenko S.I., Voskresenskiy S.S., Leont’yev O.K., Luk’yanova S.A., Spasskaya I.I., Spiridonov A.I., and Ul’yanova N.S. Geomorfologicheskoe raionirovanie SSSR i prilegayushchikh morei (Geomorphological regions of the USSR and nearest seas). M.: Vysshaya shkola, 1980. 343 p.

23. Timofeev D.A. Polymorphism as general attribute of land surface. Geomorfologiya (Geomorphology RAS). 2006. No. 2. P. 3–6. (in Russ.)

24. Ufimcev G.F. Geomorphologic convergence. Geomorfologiya (Geomorphology RAS). 2009. No. 4. P. 16–28. (in Russ.)

25. Gavrilov A.A. About the nature of geomorphologic convergence and homology phenomena. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya (Moscow University Bulletin. Series 5. Geography). 2016. No. 4. P. 3–12. (in Russ.)

26. Berlyant A.M. Geomorphometric studies in USSR: current state, challenges and perspectives. Geomorfologiya (Geomorphology RAS). 1984. No. 2. P. 15–24. (in Russ.)

27. Lastochkin A.N. Geomorphometric studies in geomorphology. P. I. Geomorphometric characteristics classification. Vestnik Len. un-ta. Seriya 7. Geologiya, geografiya (Leningrad University Bulletin. Series 7. Geology, geography). 1987. Vol. 3. No. 11. P. 44–53. (in Russ.)

28. Lastochkin A.N. Geomorphometric studies in geomorphology. P. II. Researches of morphological attributes of Earth’s surface. Vestnik Len. un-ta. Seriya 7. Geologiya, geografiya (Leningrad University Bulletin. Series 7. Geology, geography). 1988. Vol. 1. No. 7. P. 37–50. (in Russ.)

29. Lastochkin A.N. Geomorphometric studies in geomorphology. P. III. Researches of morphology of Earth’s surface elements. Vestnik LGU. Seriya 7. Geologiya, geografiya (Leningrad University Bulletin. Series 7. Geology, geography). 1988. Vol. 3. No. 21. P. 50–64. (in Russ.)

30. Kuhn M. and Johnson K. Applied predictive modeling. New York: Springer, 2013. 615 p.

31. Sharapov I.P. Statistical distributions of elevation functions, in Rel’ef Zemli i matematika (Earth’s surface and mathematics). Mocsow: Mysl (Publ.), 1967. P. 72–79. (in Russ.)

32. Tomlin D. Geographic information systems and cartographic modeling. Englewood Cliffs: Prentice Hall, 1990. 250 p.

33. Guisan A., Weiss S.B., and Weiss A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology. 1999. No. 143. P. 107–122.

34. Kharchenko S.V. Application of harmonic analysis for the quantitative description of earth surface topography. Geomorfologiya (Geomorphology RAS). 2017. No. 2. P. 14–24. (in Russ)

35. Skansi S. Introduction to Deep Learning. From Logical Calculus to Artificial Intelligence. Springer, 2018. 193 p.

36. Bronguleyev V.Vad. Recent exogeodynamic regimes of the Russian plain. Geomorfologiya (Geomorphology RAS). 2000. No. 4. P. 11–23. (in Russ.)

37. Morfostruktura i morfoskulptura platformennykh ravnin SSSR i dna omyvayushchikh ego morei (Morphostructure and morphosculpture of platform plains of the USSR and of the bottom of nearest seas). Moscow: Nauka (Publ.), 1986. 190 p. (in Russ.)

38. Bugnicourt P., Guitet S., Santos V. F., Blanc L., Sotta E. D., Barbier N., and Couteron P. Using textural analysis for regional landform and landscape mapping, Eastern Guiana Shield. Geomorphology. 2018. Vol. 317. P. 23–44.

39. Guitet S., Cornu J-F., Brunaux O., Betbeder J., Carozza J-M., and Richard-Hansen C. Landform and landscape mapping, French Guiana (South America). Journal of Maps. 2013. No. 9(3). P. 325–335.

40. Instituto Brasileiro de Geografia e estatistica (IBGE), 2004. Geomorfologia do Estado do Amapa, 1:750000. Base Cartográfica de Informações Ambientais por Estado, Ministério do Planejamento, Orçamento e Gestão, Diretoria de Geociências [Electronic source]. Access way: https://bit.ly/2RdkR5v. Access date: 01.12.2018.

41. Burningham H. and French J. Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation. Geomorphology. 2017. Vol. 282. P. 131–149.

42. Fedoseev G.S., Babich V.V., Zaykov V.V., Lebedev V.I., and Plokhikh N.A. Raspoznavanie obrazov v zadachakh kachestvennogo prognoza rudnykh mestorozhdenii (Pattern recognition for qualitative forecasting of ore deposits). Novosibirsk: Nauka (Publ.), 1980. 208 p. (in Russ.)

43. Reichenbach P., Rossi M., Malamud B., Mihir M., and Guzzetti F. A review of statistically-based landslide susceptibility models. Earth-science reviews. 2018. No. 180. P. 60–91.

44. Pipaud I. and Lehmkuhl F. Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines. Geomorphology. 2017. Vol. 293. P. 178–200.

45. Rahmati O., Tahmasebipour N., Haghizadeh A., Pourghasemi H. R., and Feizizadeh B. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology. 2017. Vol. 298. P. 118–137.

46. Jasiewicz J. and Stepinski T.F. Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology. 2013. Vol. 182. P. 147–156.

47. Grejsukh V.L. Image representation of geomorphological data, in Rel’ef Zemli i matematika (Earth’s surface and mathematics). Moscow: Mysl (Publ.), 1967. P. 18–43. (in Russ.)

48. Emami E., Ahmad T., Bebis G., Nefian A., and Fong T. Lunar Crater Detection via Region-Based Convolutional Neural Networks. Lunar and Planetary Science Conference. 2018. Vol. 49.

49. Li W. and Hsu C.Y. Automated terrain feature identification from remote sensing imagery: a deep learning approach. International Journal of Geographical Information Science. 2018. P. 1–24.

50. Latifovic R., Pouliot D., and Campbell J. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada. Remote Sensing. 2018. No. 10(2). P. 307.

51. Dyke A.S. and Campbell J.E. Surficial Geology, Abitau Lake, Northwest Territories, NTS 75-B; Canadian Geoscience Map 350 (Preliminary), Scale 1:100000; Geological Survey of Canada: Ottawa, ON, Canada, 2018.

52. Gilbert J.T., Macfarlane W.W., and Wheaton J.M. The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers & Geosciences. 2016. Vol. 97. P. 1–14.

53. Micheal A.A. and Vani K. Automatic mountain detection in lunar images using texture of DTM data. Computers & Geosciences. 2015. Vol. 82. P. 130–138.

54. Euillades L.D., Grosse P., and Euillades P.A. NETVOLC: an algorithm for automatic delimitation of volcano edifice boundaries using DEMs. Computers & Geosciences. 2013. Vol. 56. P. 151–160.

55. Saha K., Wells N.A., and Munro-Stasiuk M. An object-oriented approach to automated landform mapping: A case study of drumlins. Computers & Geosciences. 2011. Vol. 37. No. 9. P. 1324–1336.

56. Zlatopolskij A.A. New LESSA technology resources and digital terrain map analysis. Methodology, in Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa (Modern problems of remote sensing of the Earth from Space). 2011. Vol. 8. No. 3. P. 38–46. (in Russ.)

57. Farahbakhsh E., Chandra R., Olierook H.K., Scalzo R., Clark C., Reddy S.M., and Müller R.D. Computer vision-based framework for extracting geological lineaments from optical remote sensing data. arXiv preprint arXiv:1810.02320. 2018.

58. Shary P.A. Geomorfometricheskii analiz prostranstvennoi izmenchivosti pochv i ekosistem (Geomorphometric analysis of spatial variability of soils and ecosystems). PhD thesis. Rostov-on-Don: South Federal University, 2016. 319 p. (in Russ.)

59. Shary P.A., Sharaya L.S., and Mitusov A.V. Fundamental quantitative methods of land surface analysis. Geoderma. 2002. No. 107. P. 1–32.

60. Olaya V. Basic land-surface parameters. Geomorphometry: concepts, software, applications. Developments in Soil Science. Vol. 33. Amsterdam: Elsevier, 2009. P. 141–169.

61. Minár J., Jenčo M., Evans I.S., Minár Jr. J., Kadlec M., Krcho J., Pacina J., Burian L., and Benová A. Third-order geomorphometric variables (derivatives): definition, computation and utilization of changes of curvatures. International Journal of Geographical Information Science. 2013. No. 27:7. P. 1381–1402.

62. Lecours V., Simms A., Devillers R., Edinger E., and Lucieer V. Finding the Best Combinations of Terrain Attributes and GIS software for Meaningful Terrain Analysis. Geomorphometry Geosci. 2015. P. 133–136.

63. Chervan’ov I.G., Kostrikov S.V., Vorobjov B.N. Flyuvial’ni geomorfosy’stemy’: do-slidzhennya j rozrobky’ Xarkivs’koyi geomorfologichnoyi shkoly (Fluvial geomorphosystems: achievements of Kharkiv’s geomorphological group). Kharkiv: Kharkiv National University named after V.N. Karazin, 2006. 320 p. (in Ukr.)


Review

For citations:


Kharchenko S.V. New Challenges of Geomorphometry and Automatic Morphological Classifications in Geomorphology. Geomorfologiya. 2020;(1):3-21. (In Russ.) https://doi.org/10.31857/S043542812001006X

Views: 479


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)