Preview

Geomorfologiya i Paleogeografiya

Advanced search

The Use of Aerial Photography and Airborne Laser Scanning to Identify the Dynamics of Exogenic Processes as a Basis for Hazard Assessment

https://doi.org/10.31857/S0435428120010034

Abstract

Using repeated laser scanning, we analyzed the dynamics of exogenic geological processes (EGP) such as landslides, fluvial erosion, and thermokarst, for a pipeline section with a high concentration of these hazards. Air-borne imagery and field works were involved in detecting foci of the EPG. We compared laser scanning data from 2010 to 2011 and estimated topography changes resulted from the geological hazard activity in the pipeline vicinity. Variations of the topography at the landslide area were the greatest as well as those at the section with intense industrial activity. Fewer changes were found in the zones of removal and accumulation of material within the landslide area. We also detected a decrease of height marks in the areas of fluvial erosion and thermokarst sinks peripheries. In particular, the removal of 3827 m3 of material in the upper part of the test area resulted to noticeable lowering of the surface, and accumulation of 1890 m3 of material caused the rise of surface height.

About the Authors

M. V. Arkhipova
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


A. S. Victorov
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


T. V. Orlov
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


A. I. Kazeev
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


V. N. Kapralova
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


O. N. Trapeznikova
Sergeyev Institute of Geoecology RAS
Russian Federation
Moscow


References

1. Viktorov A.S., Orlov T.V., Kapralova V.N., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Sadkov S.A., and Panchenko E.G. Matematicheskaya morfologiya landshaftov kriolitozony (Mathematical morphology of cryolithozone landscapes). M.: RUDN, 2016. 230 p. (in Russ.)

2. Selezneva E.V. Primenenie lazernogo skanirovaniya v geomorfologicheskikh issledovaniyakh (Use of laser scanning in geomorphological researches). Vestn. Mosk. Un-ta. Ser. 5. Geografiya. 2013. No. 2. P. 47–53. (in Russ.)

3. Shirokova T.A., Antipov A.V., and Arbuzov S.A. Opredelenie izmenenii na mestnosti s primeneniem dannykh lidarnoi s’emki (Spotting of environmental changes using LIDAR data). Interekspo Geo-Sibir’. 2012. No. 4. P. 39–46. (in Russ.)

4. van Westen C.J., Castellanos E., and Kuriakose S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology. 2008. No. 102. P. 112–131.

5. Jaboyedoff M., Oppikofer T., Abellan A., Derron M., Loye A., and Metzger R., Pedrazzini A. Use of LIDAR in landslide investigations: a review. Nat Hazards. 2012. No. 61. P. 5–28.

6. Ardizzone F., Cardinali M., Galli M., Guzzetti F., and Reichenbach P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Sci. 2007. Vol. 7. No. 6. P. 637–650.

7. Chigira M., Duan F., Yagi H., and Furuya T. Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides. 2004. Vol. 1. No. 3. P. 203–209.

8. Dunning S., Massey C., and Rosser N. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology. 2009. Vol. 103. No. 1. P. 17–29.

9. Glenn N., Streutker D., Chadwick D., Thackray G., and Dorsch S. Analysis of LIDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology. 2006. Vol. 73. No. 1–2. P. 131–148.

10. McKean J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology. 2004. Vol. 57. No. 3–4. P. 331–351.

11. van den Eeckhaut M., Poesen J., Verstraeten G., Vanacker V., Nyssen J., Moeyersons J., van Beek L.P.H., and Vandekerckhove L. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf. Processes. Landf. 2007. Vol. 32. No. 5. P. 754–769.

12. Viero A., Teza G., Massironi M., Jaboyedoff M., and Galgaro A. Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: The Cinque case (North-Eastern Italian Alps). Geomorphology. 2010. Vol. 122. No. 1–2. P. 191–204.

13. Heritage G.L. and Milan D.J. Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology. 2009. Vol. 113. No. 1–2. P. 4–11.

14. James L.A., Watson D.G., and Hansen W.F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena. 2007. Vol. 71. No. 1. P. 132–144.

15. Schmid T. and Hildebrand E. A case study of terrestrial laser scanning in erosion research: calculation of roughness and volume balance at a logged forest site, in Intern. Archives of Photogrammetry, Remote Sensing and Spatial Information Sci. 1998. Vol. 36. No. 8/W2.

16. Thoma D., Gupta S., Bauer M., and Kirchoff C. Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment. 2005. Vol. 95. No. 4. P. 493–501.

17. Orlov T.V. and Sadkov S.A. Issledovanie karstovogo rel’efa vostochnoi chasti plato Lago-Naki metodami vysotnogo lazernogo skanirovaniya (lidar) i deshifrirovaniya aerofotosnimkov vysokogo razresheniya (Studying Karst Relief in the Eastern Lago-Naki Plateau Using LIDAR and High-Resolution Aerial Photographs), in Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2016. Vol. 4. P. 365–376. (in Russ.)

18. Saye S., van der Wal D., Pye K., and Blott S. Beach-dune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data. Geomorphology. 2005. Vol. 72. No. 1–4. P. 128–155.

19. Antipov A.V. Vliyanie plotnosti tochek vozdushnogo lazernogo skanirovaniya na tochnost' sozdaniya tsifrovoi modeli rel’efa mestnosti (Effect of points density of laser scanning on DEM creation), in Interekspo Geo-Sibir’. 2010. No. 1. P. 18–23. (in Russ.)

20. Essin A.S. and Khamitov E.T. Issledovanie tochnosti postroeniya tsifrovykh modelei rel’efa po materialam vozdushnogo lazernogo skanirovaniya territorii g. Omska (Research of DEM building accuracy based on data of aerial laser scanning of Omsk city territory), in Interekspo Geo-Sibir’. 2010. No. 3. P. 73–74.

21. Ryl’skii I.A. Lazerno-lokatsionnaya aeros’emka – osobennosti metoda i perspektivy ego primeneniya dlya geograficheskikh issledovanii (Laser locator airphotography: method features and prospect of its using for geographical researches). Vestn. Mosk. un-ta. Ser. 5. Geografiya. 2008. No. 4. P. 29–33.

22. Geokriologiya SSSR. Srednyaya Sibir’ (Geocryology of the USSR. Middle Siberia). Ed.: E.D. Ershova. M.: Nedra, 1989. 414 p. (in Russ.)

23. Yuzhnaya Yakutiya. Merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo raiona. (South Yakutia. Permafrost-hydrogeological and geotechnical conditions of Aldan mining region) M.: Izd-vo MGU, 1975. 445 p. (in Russ.)

24. Kazeev A. and Postoev G. Landslide investigations in Russia and in the USSR. Natural Hazards. 2017. No. 88. P. 81–101.

25. Trzhtsinskii Yu.B. Glubokie opolzni Vostochnoi Sibiri (Deep landslides of Eastern Siberia). Geoekologiya. 1996. No. 5. P. 74–88. (in Russ.)

26. Shepard D. A two-dimensional interpolation function for irregularly-spaced data, in Proceedings of the 1968 ACM National Conference. 1968. P. 517–524. doi:10.1145/800186.810616

27. ArcGIS9 Spatial Analyst. ESRI 1999–2001. DATA+ URL: https://www.esri.com/library/brochures/pdfs/spatialanalystbro.pdf

28. Gimmery V. User Guide for SAGA (version 2.0.5). URL: https://sagatutorials.files.wordpress.com/2016/02/saga_manual_english_cdu_june-2017.pdf

29. Jenks G.F. The Data Model Concept in Statistical Mapping, in International Yearbook of Cartography. 1967. No. 7. P. 186–190.


Review

For citations:


Arkhipova M.V., Victorov A.S., Orlov T.V., Kazeev A.I., Kapralova V.N., Trapeznikova O.N. The Use of Aerial Photography and Airborne Laser Scanning to Identify the Dynamics of Exogenic Processes as a Basis for Hazard Assessment. Geomorfologiya. 2020;(1):34-48. (In Russ.) https://doi.org/10.31857/S0435428120010034

Views: 280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)