The Use of Aerial Photography and Airborne Laser Scanning to Identify the Dynamics of Exogenic Processes as a Basis for Hazard Assessment
https://doi.org/10.31857/S0435428120010034
Abstract
About the Authors
M. V. ArkhipovaRussian Federation
Moscow
A. S. Victorov
Russian Federation
Moscow
T. V. Orlov
Russian Federation
Moscow
A. I. Kazeev
Russian Federation
Moscow
V. N. Kapralova
Russian Federation
Moscow
O. N. Trapeznikova
Russian Federation
Moscow
References
1. Viktorov A.S., Orlov T.V., Kapralova V.N., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Sadkov S.A., and Panchenko E.G. Matematicheskaya morfologiya landshaftov kriolitozony (Mathematical morphology of cryolithozone landscapes). M.: RUDN, 2016. 230 p. (in Russ.)
2. Selezneva E.V. Primenenie lazernogo skanirovaniya v geomorfologicheskikh issledovaniyakh (Use of laser scanning in geomorphological researches). Vestn. Mosk. Un-ta. Ser. 5. Geografiya. 2013. No. 2. P. 47–53. (in Russ.)
3. Shirokova T.A., Antipov A.V., and Arbuzov S.A. Opredelenie izmenenii na mestnosti s primeneniem dannykh lidarnoi s’emki (Spotting of environmental changes using LIDAR data). Interekspo Geo-Sibir’. 2012. No. 4. P. 39–46. (in Russ.)
4. van Westen C.J., Castellanos E., and Kuriakose S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology. 2008. No. 102. P. 112–131.
5. Jaboyedoff M., Oppikofer T., Abellan A., Derron M., Loye A., and Metzger R., Pedrazzini A. Use of LIDAR in landslide investigations: a review. Nat Hazards. 2012. No. 61. P. 5–28.
6. Ardizzone F., Cardinali M., Galli M., Guzzetti F., and Reichenbach P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Sci. 2007. Vol. 7. No. 6. P. 637–650.
7. Chigira M., Duan F., Yagi H., and Furuya T. Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides. 2004. Vol. 1. No. 3. P. 203–209.
8. Dunning S., Massey C., and Rosser N. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology. 2009. Vol. 103. No. 1. P. 17–29.
9. Glenn N., Streutker D., Chadwick D., Thackray G., and Dorsch S. Analysis of LIDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology. 2006. Vol. 73. No. 1–2. P. 131–148.
10. McKean J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology. 2004. Vol. 57. No. 3–4. P. 331–351.
11. van den Eeckhaut M., Poesen J., Verstraeten G., Vanacker V., Nyssen J., Moeyersons J., van Beek L.P.H., and Vandekerckhove L. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf. Processes. Landf. 2007. Vol. 32. No. 5. P. 754–769.
12. Viero A., Teza G., Massironi M., Jaboyedoff M., and Galgaro A. Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: The Cinque case (North-Eastern Italian Alps). Geomorphology. 2010. Vol. 122. No. 1–2. P. 191–204.
13. Heritage G.L. and Milan D.J. Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology. 2009. Vol. 113. No. 1–2. P. 4–11.
14. James L.A., Watson D.G., and Hansen W.F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena. 2007. Vol. 71. No. 1. P. 132–144.
15. Schmid T. and Hildebrand E. A case study of terrestrial laser scanning in erosion research: calculation of roughness and volume balance at a logged forest site, in Intern. Archives of Photogrammetry, Remote Sensing and Spatial Information Sci. 1998. Vol. 36. No. 8/W2.
16. Thoma D., Gupta S., Bauer M., and Kirchoff C. Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment. 2005. Vol. 95. No. 4. P. 493–501.
17. Orlov T.V. and Sadkov S.A. Issledovanie karstovogo rel’efa vostochnoi chasti plato Lago-Naki metodami vysotnogo lazernogo skanirovaniya (lidar) i deshifrirovaniya aerofotosnimkov vysokogo razresheniya (Studying Karst Relief in the Eastern Lago-Naki Plateau Using LIDAR and High-Resolution Aerial Photographs), in Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2016. Vol. 4. P. 365–376. (in Russ.)
18. Saye S., van der Wal D., Pye K., and Blott S. Beach-dune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data. Geomorphology. 2005. Vol. 72. No. 1–4. P. 128–155.
19. Antipov A.V. Vliyanie plotnosti tochek vozdushnogo lazernogo skanirovaniya na tochnost' sozdaniya tsifrovoi modeli rel’efa mestnosti (Effect of points density of laser scanning on DEM creation), in Interekspo Geo-Sibir’. 2010. No. 1. P. 18–23. (in Russ.)
20. Essin A.S. and Khamitov E.T. Issledovanie tochnosti postroeniya tsifrovykh modelei rel’efa po materialam vozdushnogo lazernogo skanirovaniya territorii g. Omska (Research of DEM building accuracy based on data of aerial laser scanning of Omsk city territory), in Interekspo Geo-Sibir’. 2010. No. 3. P. 73–74.
21. Ryl’skii I.A. Lazerno-lokatsionnaya aeros’emka – osobennosti metoda i perspektivy ego primeneniya dlya geograficheskikh issledovanii (Laser locator airphotography: method features and prospect of its using for geographical researches). Vestn. Mosk. un-ta. Ser. 5. Geografiya. 2008. No. 4. P. 29–33.
22. Geokriologiya SSSR. Srednyaya Sibir’ (Geocryology of the USSR. Middle Siberia). Ed.: E.D. Ershova. M.: Nedra, 1989. 414 p. (in Russ.)
23. Yuzhnaya Yakutiya. Merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo raiona. (South Yakutia. Permafrost-hydrogeological and geotechnical conditions of Aldan mining region) M.: Izd-vo MGU, 1975. 445 p. (in Russ.)
24. Kazeev A. and Postoev G. Landslide investigations in Russia and in the USSR. Natural Hazards. 2017. No. 88. P. 81–101.
25. Trzhtsinskii Yu.B. Glubokie opolzni Vostochnoi Sibiri (Deep landslides of Eastern Siberia). Geoekologiya. 1996. No. 5. P. 74–88. (in Russ.)
26. Shepard D. A two-dimensional interpolation function for irregularly-spaced data, in Proceedings of the 1968 ACM National Conference. 1968. P. 517–524. doi:10.1145/800186.810616
27. ArcGIS9 Spatial Analyst. ESRI 1999–2001. DATA+ URL: https://www.esri.com/library/brochures/pdfs/spatialanalystbro.pdf
28. Gimmery V. User Guide for SAGA (version 2.0.5). URL: https://sagatutorials.files.wordpress.com/2016/02/saga_manual_english_cdu_june-2017.pdf
29. Jenks G.F. The Data Model Concept in Statistical Mapping, in International Yearbook of Cartography. 1967. No. 7. P. 186–190.
Review
For citations:
Arkhipova M.V., Victorov A.S., Orlov T.V., Kazeev A.I., Kapralova V.N., Trapeznikova O.N. The Use of Aerial Photography and Airborne Laser Scanning to Identify the Dynamics of Exogenic Processes as a Basis for Hazard Assessment. Geomorfologiya. 2020;(1):34-48. (In Russ.) https://doi.org/10.31857/S0435428120010034