Preview

Geomorfologiya i Paleogeografiya

Advanced search

Role of orogeny and global denudation in the Cenozoic cooling

https://doi.org/10.31857/S0435428122010060

Abstract

This review paper examines a set of interrelated processes: the mountain uplift, the process of denudation, the changes in the atmospheric CO2, and the gradual climate cooling in the Cenozoic. The rate of denudation on a geological scale can change quite significantly both in connection with seismotectonic activity and climatic changes. Сlimatic changes, in turn, can be caused by the consequences of seismotectonic activity, which cause changes in the relief of the territory and the rate of denudation. The global climatic regime began to change dramatically ca. 50 million years ago. The mechanism of this most significant climatic change since the beginning of the Cenozoic era 66 million years ago to the present day (the so-called Cenozoic cooling) is still not fully understood. More and more evidence support the provisions of the Raimo-Ruddiman hypothesis, formulated in 1992, on the cause of the Cenozoic cooling. The hypothesis suggests that mountainous relief significant on a global scale causes the intensification of denudation and sequestration of atmospheric CO2 in the form of carbonate. This, in turn, affects the global climate. Methods and approaches have been significantly advanced recently enabling to infer quantitatively the intensity of individual exogenous processes and the rate of denudation in general. Modern quantitative data of river sediment yields and basin denudation based on 10Be analysis indicates the extent of disintegration of mountainous regions. The contrast in relief is a key parameter that determines the scale of natural (i.e. free of human intervention) denudation. This is reinforced by the significant contribution of mountainous regions, primarily of Alpine orogeny, to global denudation. This work illustrates the general trend of Cenozoic cooling and considers the key elements of the hypothesis formulated by Raymo and Ruddiman, as well as the results of the latest research confirming the impact of relief and denudation rates on climate change.

About the Authors

A. M. Grachev
Institute of Geography, RAS
Russian Federation

Moscow



V. N. Golosov
Institute of Geography, RAS
Russian Federation

Moscow



References

1. Keller E., Adamaitis C., Alessio P., Anderson S., Goto E., Gray S., Gurrola L., and Morell K. Applications in geomorphology. Geomorphology. 2020. Vol. 366. Article number: 106729.

2. Lasaga A.C., Soler J.M., Ganor J., Burch T.E., and Nagy K.L. Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta. 1994. Vol. 58. P. 2361–2386.

3. Sloan L.C., Bluth G.J., and Filippelli G.M. A comparison of spatially resolved and global mean reconstructions of continental denudation under ice-free and present conditions. Paleoceanography. 1997. Vol. 12. P.147–160.

4. Dobrodeev O.P. and Suetova I.A. Zhivoe veshchestvo Zemli. Massa, produktsiya, geografiya, geokhimicheskoe znachenie i vozmozhnoe vliyanie na klimat i oledenenie Zem (Living matter of the Earth. Mass, production, geography, geochemical significance and possible impact on the climate and glaciation of the Earth). Problemy obshchei fizicheskoii geografii i paleogeografii. M.: Izd-vo Mosk. un-ta (Publ.), 1976. P. 26–59. (In Russ.).

5. Rodhe H., Charlson R., and Crawford E. Svante Arrhenius and the greenhouse effect. Ambio. 1997. Vol. 26. P. 2–5.

6. Houghton J. Global warming. Reports on Progress in Physics. 2005. Vol. 68. P. 1343–1403.

7. Petersen A.M., Vincent E.M., and Westerling A.L. Discrepancy in scientific authority and media visibility of climate change scientists and contrarians. Nature Communications. 2019. Vol. 10. Article number: 3502.

8. IPCC: Climate Change 2013 – The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, 2013. 1535 p.

9. Turowski J.M. and Cook K.L. Field techniques for measuring bedrock erosion and denudation. Earth Surface Processes and Landforms. 2017. Vol. 42. P. 109–127.

10. Granger D.E. and Schaller M. Cosmogenic nuclides and erosion at the watershed scale. Elements. 2014. Vol.10. P. 369–373.

11. Erozionno-ruslovye sistemy (Catchment erosion-fluvial systems). R.S. Chalov, A.Yu. Sidorchuk, and V.N. Golosov (Eds.). M.: INFRA (Publ.), 2017. 702 p. (In Russ.).

12. Milliman J.D. and Farnsworth K.L. River discharge to the coastal ocean: A global synthesis. Cambridge University Press, Cambridge, UK, 2013. 394 p.

13. Land use and climate change impacts on erosion and sediment transport. S. Chalov, V. Golosov, A. Collins, and M. Stone (Eds.). Proceedings of the International Association of Hydrological Sciences. 2019. Vol. 381. 126p.

14. Portenga E.W. and Bierman P.R. Understanding Earth’s eroding surface with 10Be. GSA Today. 2011. Vol. 21. P. 4–10.

15. Mishra A.K., Placzek C., and Jones R. Coupled influence of precipitation and vegetation on millennial-scale erosion rates derived from 10Be. PLoS ONE. 2019. Vol.14. Article number: e0211325, Supporting information: https://doi.org/10.1371/journal.pone.0211325.

16. Anagnostou E., John E.H., Edgar K.M., Foster G.L., Ridgwell A., Inglis G.N., Pancost R.D., Lunt D.J., and Pearson P.N. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature. 2016. Vol. 533. P. 380–384.

17. Caves J.K., Jost A.B., Lau K.V., and Maher K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth and Planetary Science Letters. 2016. Vol. 450. P. 152–163.

18. Miller K.G., Browning J.V., Schmelz W.J., Kopp R.E., Mountain G.S., and Wright J.D. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances. 2020. Vol. 6. Article number: eaaz1346.

19. Zachos J.C., Dickens G.R., and Zeebe R.E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008. Vol. 451. P. 279– 283.

20. Izmenenie klimata i landshaftov za poslednie 65 millionov let (kainozoi: ot paleotsena do golotsena) (Climate and landscape change over the last 65 million years (Cenozoic: from Paleocene to Holocene)). A.A. Velichko (Ed.). M.: GEOS (Publ.), 1999. 260 p. (in Russ.).

21. Barker P.F., Diekmann B., and Escutia C. Onset of Cenozoic Antarctic glaciation. Deep Sea Research Part II: Topical Studies in Oceanography. 2007. Vol. 54. P. 2293– 2307.

22. Raymo M.E. and Ruddiman W.F. Tectonic forcing of late Cenozoic climate. Nature. 1992. Vol. 359. P. 117– 122.

23. Tectonic uplift and climate change. W.F. Ruddiman (Ed.). 1997. Springer, New York. 535 p.

24. Yarmolyuk V.V. and Kuzmin M.I. Korrelyatsiya endogennykh sobytii i variatsii klimata v pozdnem kainozoe Tsentral’noi Azii (Correlation of endogenous events and climate variations in the Late Cenozoic of Central Asia). Stratigrafiya. Geologicheskaya korrelyatsiya. 2006. Vol. 14. P. 3–25. (in Russ.).

25. Kuzmin M.I. and Yarmolyuk V.V. Goroobrazuyushchie protsessy i variatsii klimata v istorii Zemli (Mountain forming processes and climate variations in the history of the Earth). Geologiya i geofizika. 2006. Vol. 47. P. 7– 25. (in Russ.).

26. Chamberlin T.C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. The Journal of Geology. 1899. Vol. 7. P.545–584.

27. Zubakov V.A. Global’nye klimaticheskie sobytiya neogena (Global climatic events of the Neogene). L.: Gidrometeoizdat (Publ.), 1990. 224 p. (in Russ.).

28. Penman D.E., Rugenstein J.K.C., Ibarra D.E., and Winnick M.J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth-Science Reviews. 2020. Article number: 103298.

29. White A.F. and Brantley S.L. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology. 2003. Vol. 202. P. 479–506.

30. Hilley G.E., Chamberlain C.P., Moon S., Porder S., and Willett S.D. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth and Planetary Science Letters. 2010. Vol. 293. P.191–199.

31. Winnick M.J. and Maher K. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth and Planetary Science Letters. 2018. Vol. 485. P. 111– 120.

32. Maher K. and Navarre-Sitchler A. Reactive transport processes that drive chemical weathering: From making space for water to dismantling continents. Reviews in Mineralogy and Geochemistry. 2019. Vol. 85. P. 349– 380.

33. Lebedeva M.I. and Brantley S.L. Relating the depth of the water table to the depth of weathering. Earth Surface Processes and Landforms. 2020. Vol. 45. P. 2167–2178.

34. Zachos J., Pagani M., Sloan L., Thomas E., and Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001. Vol. 292. P.686–693.

35. Scher H.D. and Martin E.E. Timing and climatic consequences of the opening of Drake Passage. Science. 2006. Vol. 312. P. 428–430.

36. O’Dea A., Lessios H.A., Coates A.G., Eytan R.I., Restrepo-Moreno S.A., Cione A.L., Collins L.S., De Queiroz A., Farris D.W., Norris R.D., Stallard R.F., Woodburne M.O., Aguilera O., Aubry M.-P., Berggren W.A., Budd A.F., Cozzuol M.A., Coppard S.E., Duque-Caro H., Finnegan S., Gasparini G.M., Grossman E.L., Johnson K.G., Keigwin L.D., Knowlton N., Leigh E.G., Leonard-Pingel J.S., Marko P.B., Pyenson N.D., Rachello-Dolmen P.G., Soibelzon E., Soibelzon L., Todd J.A., Vermeij G.J., and Jackson J.B.C. Formation of the Isthmus of Panama. Science Advances. 2016. Vol. 2. Article number: e1600883.

37. Kennett J.P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research. 1977. Vol. 82. P. 3843–3860.

38. Haug G.H. and Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature. 1998. Vol. 393. P. 673–676.

39. Brooks C.E.P. Climate through the Ages: A Study of the Climatic Factors and their Variations. Ernest Benn, London, 1926. 439 p.

40. Urey H.C. The thermodynamic properties of isotopic substances. Journal of the Chemical Society. 1947. P.562–581.

41. Emiliani C. Temperature and age analysis of deep-sea cores. Science. 1957. Vol. 125. P. 383–387.

42. Bradley R.S. Paleoclimatology: Reconstructing Climates of the Quaternary. Academic Press, San Diego, 2014. 696 p.

43. Paleoclimatology. G. Ramstein, A. Landais, N. Bouttes, P. Sepulchre, A. Govin (Eds.). Springer, New York, 2021. 478 p.

44. Barrett P.J. A history of Antarctic Cenozoic glaciation view from the continental margin. F. Florindo, M. Siegert (Eds.), Antarctic Climate Evolution. Developments in Earth and Environmental Science. 2008. Vol. 8. P. 33– 83.

45. Zachos J.C., Lohmann K.C., Walker J.C., and Wise S.W. Abrupt climate change and transient climates during the Paleogene: A marine perspective. The Journal of Geology. 1993. Vol. 101. P. 191–213.

46. Wilson G.S., Roberts A.P., Verosub K.L., Florindo F., and Sagnotti L. Magnetobiostratigraphic chronology of the Eocene-Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: Implications for Antarctic glacial history. Geological Society of America Bulletin. 1998. Vol. 110. P. 35–47.

47. Larsen H.C., Saunders A.D., Clift P.D., Beget J., Wei W., and Spezzaferri S. Seven million years of glaciation in Greenland. Science. 1994. Vol. 264. P. 952– 955.

48. Shackleton N.J., Backman J., Zimmerman H., Kent D.V., Hall M.A., Roberts D.G., Schnitker D., Baldauf J.G., Desprairies A., Homrighausen R., Huddlestun P., Keene J.B., Kaltenback A.J., Krumsiek K.A.O., Morton A.C., Murray J.W., and Westberg-Smith J. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature. 1984. Vol. 307. P. 620–623.

49. Hays J.D., Imbrie J., and Shackleton N.J. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science. 1976. Vol. 194. P. 1121–1132.

50. Mix A.C., Bard E., and Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews. 2001. Vol. 20. P. 627–657.

51. Douglas I. Man, vegetation, and the sediment yield of rivers. Nature. 1967. Vol. 215. P. 925–928.

52. Jansen I.M.L. and Painter R.B. Predicting sediment yield from climate and topography. Journal of Hydrology. 1974. Vol. 21. P. 371–380.

53. Milliman J.D. and Meade R.H. World-wide delivery of river sediment to the oceans. Journal of Geology. 1983. Vol. 91. P. 1–21.

54. Milliman J.D. and Syvitski J.P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology. 1992. Vol. 100. P. 525–544.

55. Gilbert G.K. Geology of the Henry Mountains. US Geological and Geographical Survey of the Rocky Mountain Region. Washington, DC, 1877. 160 p.

56. Meybeck M., Green P., and Vörösmarty C. A new typology for mountains and other relief classes. Mountain Research and Development. 2001. Vol. 21. P. 34–45.

57. Larsen I.J., Montgomery D.R., and Greenberg H.M. The contribution of mountains to global denudation. Geology. 2014. Vol. 42. P. 527–530.

58. Tsyplenkov A., Golosov V., and Vanmaercke M. Contemporary suspended sediment yield of Caucasus mountains. Proceedings of the International Association of Hydrological Sciences. 2019. Vol. 381. P. 87–93.

59. Tsyplenkov A., Vanmaercke M., Golosov V., and Chalov S. Suspended sediment budget and intra-event sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus. Journal of Soils and Sediments. 2020. Vol. 20. P. 3266–3281.

60. Mariotti, A., Blard, P. H., Charreau, J., Petit, C., Molliex, S., and ASTER Team. Denudation systematics inferred from in situ cosmogenic 10Be concentrations in fine (50–100 μm) and medium (100–250 μm) sediments of the Var River basin, southern French Alps. Earth Surface Dynamics. 2019. Vol. 7. P. 1059–1074.

61. Ojha L., Ferrier K.L., and Ojha T. Millennial-scale denudation rates in the Himalaya of Far Western Nepal. Earth Surface Dynamics. 2019. Vol. 7. P. 969–987.

62. Moore A.K. and Granger D.E. Watershed-averaged denudation rates from cosmogenic 36Cl in detrital magnetite. Earth and Planetary Science Letters. 2019. Vol.527. Article number: 115761.

63. Starke J., Ehlers T.A., and Schaller M. Latitudinal effect of vegetation on erosion rates identified along western South America. Science. 2020. Vol. 367. P. 1358– 1361.

64. Wittmann H., Oelze M., Gaillardet J., Garzanti E., and von Blanckenburg F. A global rate of denudation from cosmogenic nuclides in the Earth’s largest rivers. Earth-Science Reviews. 2020. Vol. 204. Article number: 103147.

65. Mao L., Comiti F., Carrillo R., and Penna D. Sediment transport in proglacial rivers. In: T. Heckmann & D. Morche (Editors), Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. 2019. P. 199–217.

66. Strakhov N.M. Osnovy teorii litogeneza (Foundations of the theory of lithogenesis). M.: Izd. AN SSSR (Publ.), 1960. T. 1. Tipy litogeneza i ikh razmeshchenie na poverkhnosti Zemli. 212 s.; T. 2. Zakonomernosti sostava i razmeshcheniya gumidnykh otlozhenii (Vol. 1. Types of lithogenesis and their placement on the Earth’s surface. 212 p.; Vol. 2. Regularities of the composition and distribution of humid deposits). 574 p. (in Russ.)

67. Gabet E.J. and Mudd S.M. A theoretical model coupling chemical weathering rates with denudation rates. Geology. 2009. Vol. 37. P. 151–154.

68. Hilton R.G. and West A.J. Mountains, erosion and the carbon cycle. Nature Reviews Earth and Environment. 2020. Vol. 1. P. 284–299.

69. Colbourn G., Ridgwell A., and Lenton T. The time scale of the silicate weathering negative feedback on atmospheric CO2. Global Biogeochemical Cycles. 2015. Vol. 29. P. 583–596.

70. Goudie A.S. and Viles H.A. Weathering and the global carbon cycle: Geomorphological perspectives. EarthScience Reviews. 2012. Vol. 113. P. 59–71.

71. Galy V., Peucker-Ehrenbrink B., and Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature. 2015. Vol. 521. P. 204– 207.

72. Ruddiman W.F., Prell W.L., and Raymo M.E. Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. Journal of Geophysical Research: Atmospheres. 1989. Vol. 94. P. 18379–18391.

73. Ollier C.D. Mountain building and climate: Mechanisms and timing. Geografia Fisica e Dinamica Quaternaria. 2004. Vol. 27. P. 139–149.

74. Rae J.W., Zhang Y.G., Liu X., Foster G.L., Stoll H.M., and Whiteford R.D. Atmospheric CO2 over the Past 66 Million Years from Marine Archives. Annual Review of Earth and Planetary Sciences. 2021. Vol. 49. P. 609– 641.

75. Ding L., Xu Q., Yue Y., Wang H., Cai F., and Li S. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters. 2014. Vol. 392. P.250–264.

76. Kapp P. and DeCelles P.G. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science. 2019. Vol. 319. P. 159–254.

77. Xiong Z., Ding L., Spicer R.A., Farnsworth A., Wang X., Valdes P.J., Su T., Zhang Q., Zhang L., Cai F., Wang H., Lia Z., Song P., Guo X., and Yue Y. The early Eocene rise of the Gonjo Basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters. 2020. Vol. 543. Article number: 116312.

78. van Hinsbergen D.J., Lippert P.C., Li S., Huang W., Advokaat E. L., and Spakman W. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics. 2019. Vol. 760. P.69–94.

79. Kump L.R., Brantley S.L., and Arthur M.A. Chemical, weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences. 2000. Vol. 28. P.611–667.

80. Maher K., and Chamberlain C. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science. 2014. Vol. 343. P. 1502–1504.

81. Ibarra D.E., Rugenstein J.K.C., Bachan A., Baresch A., Lau K.V., Thomas D.L., Lee J.-E., Boyce C.K., and Chamberlain C.P. Modeling the consequences of land plant evolution on silicate weathering. American Journal of Science. 2019. Vol. 319. P. 1–43.

82. Galy V., France-Lanord C., Beyssac O., Faure P., Kudrass H., and Palhol F. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature. 2007. Vol. 450. P. 407–410.

83. Hay W.W., Soeding E., DeConto R.M., and Wold C.N. The Late Cenozoic uplift – climate change paradox. International Journal of Earth Sciences. 2002. Vol. 91. P.746–774.

84. Rind D., Russell G., and Ruddiman W.F. The effects of uplift on ocean-atmosphere circulation. W.F. Ruddiman (Ed.). Tectonic uplift and climate change. Springer, New York, 1997, 535 p.

85. Feng R., Poulsen C.J., Werner M., Chamberlain C.P., Mix H.T., and Mulch A. Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera. American Journal of Science. 2013. Vol. 313. P. 613–648.

86. Foster G.L., Royer D.L., and Lunt D.J. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications. 2017. Vol. 8. Article number: 14845.

87. Panin A. Land-ocean sediment transfer in palaeotimes, and implications for present-day natural fluvial fluxes. V. Golosov, V. Belyaev, and D.E. Walling (Eds.), Sediment transfer through the fluvial system. IAHS Publ. 2004. Vol. 288. P. 115–124.

88. Hinderer M., Kastowski M., Kamelger A., Bartolini C., and Schlunegger F. River loads and modern denudation of the Alps – a review. Earth-Science Reviews. 2013. Vol.118. P. 11–44.


Review

For citations:


Grachev A.M., Golosov V.N. Role of orogeny and global denudation in the Cenozoic cooling. Geomorfologiya. 2022;53(2):89-103. (In Russ.) https://doi.org/10.31857/S0435428122010060

Views: 243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)