FRACTAL GEOMETRY OF THE RIVER NETWORK
https://doi.org/10.15356/0435-4281-2014-1-3-14
Abstract
Fractal dimensions of the more than 200 large river networks of the former USSR were calculated. We use the term «fractal» as «a structure consisted of parts which are in some sense alike to the whole». River networks don’t possess the complete self-likeness – fractal dimension changes with the change of measurer unit and the chosen length of the rivers. Therefore the calculations were fulfilled with the measurer length lying within the
limits of 1–10 km. Fractal dimension of the river networks of the former USSR changes from 1.1 to 1.7, which corresponds to the aggregate length of the short rivers (1–10 km) consisting 20–80% of total river network length. Then all studied networks have fractal dimension more than Euclidian dimension of line (1) and less than Euclidian dimension of plane (2) as it should be accordingly to the fractal approach. There is a tendency for fractal dimension to grow with the height of the river basin and humidity of the territory. It is also strongly correlated with the network density. Fractal dimension as an index of the river length distribution has some advantages in comparison with the other morphometric indexes used. It augments significantly the possibility of the quantitative analysis of the drainage networks.
About the Author
A. Yu. SidorchukRussian Federation
Geographical Department
References
1. Balhanov V.K., Bakshuev Yu.B. Fractal size of the Selenga delta river network structure. Water Resour., 2004, vol. 31, no. 2, pp. 165–169 (in Russ.).
2. Vasiliev L.N. Fractality and self-similarity of natural spatial structures. Vestn. Mosk. Univ., Ser. 5: Geogr., 1992, no. 5, pp. 25–35 (in Russ.).
3. Domanitskiy A.P., Dubrovina R.G., Isaeva A.I. Reki I ozera Sovetskogo Soyuza (Rivers and lakes of the Soviet Union). Leningrad: Gidrometeoizdat (Publ.), 1971, 104 p.
4. Ivanov A.I., Koronovskiy A.A., Minyukhin I.A., Yaskov I.A. Evaluation of fractal size of gully network in Saratov. App. Nonlin. Dyn., 2006, vol. 14, no. 2, pp. 64–74 (in Russ.).
5. Mandelbrot B.B. Fraktalnaya geometriya prirody (Fractal geometry of nature). Moscow: Inst. Comp. Res. (Publ.), 2002, 656 p.
6. Melnik M.A. Fraktalnye zakonomernosti form rel’efa (na primere erozionnogo raschleneniya poverhnosti I izvilistosti rek) (Fractal trends of landforms (on the example of erosion dissection and sinuosity)): PhD thesis. Tomsk: SB RAN (Publ.), 2007, 19 p.
7. Melnik M.A., Pozdniakov A.V. Fractals in erosion dissection and self-oscillations in dynamics of geomorphosystems. Geomorfologiya (Geomorphology RAS), 2008, no. 3, pp. 86–95 (in Russ.).
8. Nikora V.I. Fraktalnye svoystva nekotoryh gidrologicheskih ob”ektov (Fractal features of some hydrological sites). Kishinev: IGIG AN MSSR (Publ.), 1988, 43 p.
9. Puzachenko Yu.G. Fractal theory in landscapes structure researches. Vestn. Mosk. Univ., Ser. 5: Geogr., 1997, no. 2, pp. 24–40 (in Russ.).
10. Resursy poverhnostnyh vod SSSR. Gidrologicheskaya izuchennost (USSR surface water recourses. Hydrological state of knowledge). Leningrad: Gidrometeoizdat, 1964, vol. 7, Donskoy Region. 265 p.
11. Uchaev D.V. Metodika geoinformatsionnogo modelirovaniya rechnyh setey na osnove fraktalnyh metodov (Methods of river network geoinformation modelling based on fractal technics). PhD thesis. Moscow: MIIGAiK (Publ.), 2007, 24 p.
12. Feder E. Fraktaly (Fractals). Moscow: Mir (Publ.), 1991, 254 p.
13. Fraktaly v fizike (Fractals in Physics). L. Pietronero, E. Tozatti. Ed. Мoscow: Mir (Publ.), 1988, 672 p.
14. Khorton R.E. Erozionnoe razvitie rek I vodosbornyh basseynov (Erosion development of rivers and catchment basins). Мoscow–Leningrad: IIL (Publ.), 1948, 158 p.
15. Chupikova S.A. Fraktalnye metody vyyavleniya skrytoy regulyarnosti v erozionnom raschlenenii poverhnosti (na primere analiza Sayano-Tuvinskogo nagor’ya, Respublika Tuva) (Fractal technics of internal regularity discovery in erosion dissection (on the example of the Sayan-Tuva uplands, Republic of Tuva). PhD thesis. Tomsk: SB RAN (Publ.), 2010, 16 p.
16. http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro
17. Mandelbrot B.B. Fractals: Form, chance, and dimension. San Francisco: W.H. Freeman, 1977, 365 p.
Review
For citations:
Sidorchuk A.Yu. FRACTAL GEOMETRY OF THE RIVER NETWORK. Geomorfologiya. 2014;(1):3-14. (In Russ.) https://doi.org/10.15356/0435-4281-2014-1-3-14