Preview

Geomorfologiya i Paleogeografiya

Advanced search

USING DTM FOR AUTOMATIC PLOTTING OF CATCHMENTS

https://doi.org/10.15356/0435-4281-2014-1-45-52

Abstract

The authors suggest the method for digital elevation models (DEMs) compiling aimed to plotting the boundaries of the drainage catchments for the lowland relief (West Siberia as an example). The proposed method allows taking into account the local contemporary depressions – traps of the suspended sediment yield and surface runoff. In the result the higher precision of the basins boundaries pattern is obtained. In this method additional information from the topographic maps is used. The DEM compiled with the use of the suggested method helps to significantly increase the accuracy of the West Siberian catchments’ automatic plotting.

About the Authors

K. A. Mal’tsev
Kazan (Volga region) Federal University
Russian Federation


O. P. Yermolaev
Kazan (Volga region) Federal University
Russian Federation


References

1. Gosudarstvennyj vodnyj kadastr: ezhegodnye dannye o kachestve poverkhnostnykh vod sushi (State water cadastre: land surface water quality annual data). Arkhangelsk: Goskomitet SSSR po gidrometeorologii (Publ.), 1990, v. 1(28), 328 p.

2. Gosudarstvennyj vodnyj kadastr: ezhegodnye dannye o rejime i resursakh poverkhnostnykh vod sushi (State water cadastre: land surface water regime and resources annual data). Arkhangelsk: Goskomitet SSSR po gidrometeorologii i kontrolyu prirodnoj sredy (Publ.), 1984, v. 1, 542 p.

3. Gosudarstvennyj vodnyj kadastr: osnovnye gidrologicheskie kharakteristiki (State water cadastre: basic water characteristics). Leningrad: Gidrometeoizdat (Publ.), 1979, v. 10, 483 p.

4. Gosudarstvennyj vodnyj kadastr: osnovnye gidrologicheskie kharakteristiki (State water cadastre: basic water characteristics). Leningrad: Gidrometeoizdat (Publ.), 1978. v. 2, 670 p.

5. Gosudarstvennyj vodnyj kadastr: osnovnye gidrologicheskie kharakteristiki (State water cadastre: basic water characteristics). Leningrad: Gidrometeoizdat (Publ.), 1980, v. 15, 248 p.

6. Gosudarstvennyj vodnyj kadastr: osnovnye gidrologicheskie kharakteristiki (State water cadastre: basic water characteristics). Leningrad: Gidrometeoizdat (Publ.), 1979, v. 15, 488 p.

7. Dedkov A.P., Mozjerin V.I. Erosiya i stok nanosov na Zemle (Erosion and sediment run-off), Kazan: KazGU (Publ.), 1984, 264 p.

8. Ermolaev O.P., Maltsev K.A. Creation of geospatial database for basinal geosystems of Russia, in XXV plenarnoe mezhvuz. koordinats. soveschan. po probleme erosionnykh, ruslovykh i ustievykh protsessov (Astrakhan, 12-14 oktyabrya 2010 g.). Doklady i kratkie soobscheniya. (XXV plenary interacademic coordination meeting devoted to erosional, river bed and estuarial processes (Astrakhan, October 12-14, 2010). Proceedings and brief reports). Astrakhan: AGU (Publ.), 2010, pp. 132–133.

9. Kalinin V.G., Pyankov S.V. Primenenie geoinformatsionnykh tekhnologij v gidrologicheskikh issledovaniyakh (Use of GIS technologies in hydrologic researches). Perm: OOO “Alex-Press” (Publ.), 2010, 217 p.

10. Pogorelov A.V., Dumit J.А. Relief basseina r. Kubani: morfologicheskij analiz (The river Kuban basin relief: morphologic analysis). Moscow: GEOS (Publ.), 2009, 2008 p.

11. Band L.E. Topographic partition of watersheds with digital elevation models. Water Research, 1986, no. 22 (1), pp. 15–24.

12. Burrough P.A., McDonnell R.A. Principles of geographical information systems: spatial information systems and geostatistics. NY.: Oxford University Press, 1998, 333 p.

13. Hengl T., Hannes I.R. Developments in soil science. Geomorphometry: concepts, software, applications, Luxembourg: Office for Official Publications of the European Communities, v. 33, 2009, p. 535.

14. Jenson S.K., Domingue J.O. Extraction topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 1988. no. 54 (11), pp. 1593–1600.

15. Lindsay J.B. The terrain analysis system: a tool for hydrogeomorphic applications. Hydrological Processes, 2005, no. 19(5), pp. 1123–1130.

16. Lindsay J.B., Creed I.F. Distinguishing actual and artefact depressions in digital elevation data. Computers & Geosciences, 2006, no. 32 (8), pp. 1192–1204.

17. Lindsey J.B., Creed I.F. Removal artifact depression from digital elevation model: toward a minimum impact approach. Hydrological Processes, 2005, no. 19, pp. 3113–3126.

18. Maltsev K., Yermolaev O., Mozzherin V. Mapping and spatial analysis of suspended sediment yields from the Russian Plain. IAHS-AISH Publication, 2012, v. 356, pp. 251–258.

19. Martz L.W., de Jong E. CATCH: а FORTRAN program for measuring catchment area from digital elevation models. Computers & Geosciences, 1988, no. 14 (5), pp. 627–640.

20. Martz L.W., Garbrecht J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM // Computers & Geosciences. 1999. № 25 (7). P. 835–844.

21. Martz L.W., Garbrecht J. Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method–comment. Journ. of Hydrology, 1995, no. 167(5), pp. 393–396.

22. Martz L.W., Garbrecht J. Treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological Processes, 1998, no. 12 (6), pp. 843–855.

23. Moore I.D., Grayson R.B., Ladson A.R. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 1991, no. 5, pp. 3–30.

24. Rieger W. A phenomenon-based approach to upslope contributing area and depressions in DEMs. Hydrological Processes, 1998, no. 12, pp. 857–872.

25. Wilson J.P., Gallant J.C. Terrain Analysis: Principles and Applications. New York: John Wiley and Sons, 2000, 479 p.

26. Yermolaev O., Avvakumova A. Cartographic-geoinformational estimation of spatiotemporal erosion dynamics of arable soils in forest-steppe landscapes of the Russian Plan. IAHS-AISH Publication, 2012, v. 356, pp. 332–337.

27. Yermolaev O.P. Assessment of the Suspended Sediment Yield in the Rivers’ Basin of the Russian Plain. World Applied Sci. Journ, 2013, no. 27 (5), pp. 626–631.

28. Yermolaev O.P., Maltsev K.A., Mozzherin V.V., Mozzherin V.I. Global geoinformation system “Suspended sediment yield in the river basins of the Earth”. Geomorphology, 2012, no. 2, pp. 50–58.


Review

For citations:


Mal’tsev K.A., Yermolaev O.P. USING DTM FOR AUTOMATIC PLOTTING OF CATCHMENTS. Geomorfologiya. 2014;(1):45-52. (In Russ.) https://doi.org/10.15356/0435-4281-2014-1-45-52

Views: 1297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)