Preview

Geomorfologiya i Paleogeografiya

Advanced search

Experience of applying the cosmogenic dating method (10Be) to assess the age and scale of the Pleistocene Glaciation in North-Eastern Siberia (based on the example of glacier complexes of the Chersky Ridge)

https://doi.org/10.31857/S2949178924030039

EDN: PMDUGC

Abstract

The history of studying glacial complexes in North­Eastern Siberia goes back more than 150 years. During this period, extensive geological and geomorphological features were obtained, which made it possible to determine the stages, nature and extent of glaciations. At the same time, the lack of direct dating of the glacial relief obtained by geochronological methods does not allow for full­fledged paleogeographic reconstructions. This leads to discussions in both Russian and English literature about the possibility of the existence of glaciation in the mountains of North­Eastern Siberia. In this regard, to determine the size and time of glaciation in the southern part of the Chersky Range, we carried out a complex of geomorphological and geochronological studies, which are part of the international project “Searching for the missing ice sheet in Eastern Siberia”. Because of fieldwork in the Ohandya Ridge, in the Malyk­Sien River valley, three terminal moraine ridges have been identified, reflecting different stages of glaciation. Based on the dating of exposed boulders within three terminal moraine complexes, 22 10Be cosmogenic dates were obtained. The average exposed age for the outer moraine is 120.8±13.7 ka, for the middle one North­Eastern 37.7±4.9 ka and for the internal moraine North­Eastern 13.8±2.2 ka. The age of the terminal moraine complexes testifies to the mountain­valley character of the glaciation of the Chersky Range in the Middle and Late Pleistocene, and emphasizes the trend towards a gradual decrease in the maximum length of glaciers in Northeast Asia. The successive reduction of glaciers from MIS 6 to MIS 2 indicates an increase in the deficit of atmospheric precipitation and a significant cryoaridization of the region. The decreasing trend may be related to the sharply continental conditions observed in the interior of Eurasia and western North America. This trend contrasts with much of the glaciated areas in the Northern Hemisphere, where the maximum area of Late Pleistocene glaciers is reconstructed for LGM time (MIS 2). The obtained datings of the glacial complexes of the Chersky Ridge confirm that at the end of the Middle and Late Pleistocene glaciations here were of a limited nature and there was no single ice cover in the mountains.

About the Authors

S. G. Arzhannikov
Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


A. V. Arzhannikova
Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


A. A. Chebotarev
Institute of the Earth’s Crust SB RAS, Irkutsk
Russian Federation


N. V. Torgovkin
Institute of Permafrost Science, SB RAS, Yakutsk
Russian Federation


D. V. Semikolennykh
Lomonosov Moscow State University, Faculty of Geography, Moscow
Russian Federation


M. S. Lukyanycheva
Institute of Geography RAS, Moscow
Russian Federation


R. N. Kurbanov
Lomonosov Moscow State University, Faculty of Geography, Moscow; Institute of Geography RAS, Moscow; Institute of Water Problems, Hydropower and Ecology of the NAST, Dushanbe
Russian Federation


References

1. REFERENCES

2. Ananev G.S., Ananeva E.G., Bodrova O.V. et al. (1988). Geomorfologicheskii analiz oblastei drevnego vulkanizma (na primere Severnogo Priokhotya). Vladivostok: DVO AN SSSR, 234 p. (in Russ.)

3. Baranova Yu.P., Biske S.F. (1964). Severo-Vostok SSSR. M.: Nauka, 300 p. (in Russ.)

4. Verkhovskaya N.B. (1986). Pleistotsen Chukotki. Palino-stratigrafiya i osnovnye paleogeograficheskie sobytiya. Vladivostok: DVNTs AN SSSR, 116 p. (in Russ.)

5. Galanin A.A., Glushkova O.Yu. (2006). Oledeneniya, klimat i rastitelnost raiona Tauiskoi guby (Severnoe Priokhote) v pozdnechetvertichnoe vremya // Geomorfologiya. № 2. P. 50-61. (in Russ.)

6. Galanin A.A. (2012). Vozrast poslednego lednikovogo maksimuma na severo-vostoke Azii // Kriosfera Zemli. T. 16. № 3. P. 39-52. (in Russ.)

7. Glushkova O.Yu., Gualtieri L. (1998). Osobennosti pozdnechetvertichnogo oledeneniya severnoi chasti Koryakskogo nagorya // Izmenenie prirodnoi sredy Beringii v chetvertichnyi period. Magadan: SVNTs DVO RAN, P. 112-132. (in Russ.)

8. Kind N.V. (1975). Oledeneniya Verkhoyanskikh gor i polozhenie ikh v absolyutnoi geokhronologicheskoi shkale verkhnego antropogena Sibiri // Paleogeografiya i periglyatsialnye yavleniya pleistotsena. M.: Nauka, P. 124-132. (in Russ.)

9. Shilo N.A., Lozhkin A.V., Anderson P.M. et al. (2005). Novye radiouglerodnye i paleobotanicheskie dannye o razvitii lednikovykh ozer Chukotki // DAN. T. 404. № 5. P. 687-689. (in Russ.)

10. Applegate P. J., Urban N. M., Laabs B. J. et al. (2010). Modeling the statistical distributions of comsogenic exposure dates from moraines // Geoscientific Model Development. Vol. 3. P. 293-307. https://doi.org/10.5194/gmd-3-293-2010

11. Astakhov V., Shkatova V., Zastrozhnov A. et al. (2016). Glaciomorphological Map of the Russian Federation // Quaternary International. Vol. 420. P 4-14. https://doi.org/10.1016/j.quaint.2015.09.024

12. Balco G., Stone J. O., Lifton N. A. et al. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements // Quaternary Geochronology. Vol. 3. №3. P. 174-195. https://doi.org/10.1016/j.quageo.2007.12.001

13. Barr I. D., Clark C. D. (2012). Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony // Quaternary Science Reviews. Vol. 53. P. 72-87. https://doi.org/10.1016/j.quascirev.2012.08.004

14. Batbaatar J., Gillespie A.R., Fink D. et al. (2018). Asynchronous glaciations in arid continental climate // Quaternary Science Reviews, v. 182, p. 1-19. https://doi.org/10.1016/j.quascirev.2017.12.001

15. Blomdin R., Heyman J., Stroeven A. P. et al. (2016). Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia // Journal of Maps. Vol. 12. № 1. P. 123-136.

16. https://doi.org/10.1080/17445647.2014.992177

17. Blomdin R., Stroeven A., Harbor J. et al. (2018). Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia // Quaternary Geochronology. Vol. 47 P. 54-71.

18. https://doi.org/10.1016/j.quageo.2018.05.008

19. Brigham-Grette J., Gualtieri L. M., Glushkova O. Y. et al. (2003). Chlorine-36 and C-14 chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet // Quaternary Research, Vol. 59. № 3. P. 386-398.

20. https://doi.org/10.1016/s0033-5894(03)00058-9

21. Briner J. P., Kaufman D. S. (2008). Late Pleistocene mountain glaciation in Alaska: key chronologies // Journal of Quaternary Science. Vol. 23. № 6-7. P 659-670. https://doi.org/10.1002/jqs.1196

22. Clark P. U., Tarasov L. (2014). Closing the sea level budget at the Last Glacial Maximum // Proceedings of the National Academy of Sciences U S A. Vol. 111. № 45. P. 15861-15862. https://doi.org/10.1073/pnas.1418970111

23. Ehlers J., Gibbard P. L. (2007). The extent and chronology of Cenozoic Global Glaciation // Quaternary International. Vol. 164-165. P. 6-20. https://doi.org/10.1016/j.quaint.2006.10.008

24. Fabel D., Harbor J. (1999). The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology // Annals of Glaciology. Vol. 28. P. 103-110. https://doi.org/10.3189/172756499781821968

25. Gillespie A.R., Burke R.M., Komatsu G. et al. (2008). Late Pleistocene glaciers in Darhad Basin, northern Mongolia // Quaternary Research. Vol. 69. P. 169–187.

26. https://doi.org/10.1016/j.yqres.2008.01.001

27. Gosse J. C., Phillips F. M. (2001). Terrestrial in situ cosmogenic nuclides: theory and application // Quaternary Science Reviews. Vol. 20. P. 1475-1560.

28. https://doi.org/10.1016/S0277-3791(00)00171-2

29. Glushkova O.Y. (2011). Late Pleistocene glaciations in north-east Asia // Developments in Quaternary Sciences. Vol. 15. P. 865-875. https://doi.org/10.1016/B978-0-444-53447-7.00063-5

30. Grosswald M. G., Hughes T. J. (2002). The Russian component of an Arctic ice sheet during the Last Glacial Maximum //Quaternary Science Reviews. Vol. 21. №. 1-3. P. 121-146.

31. https://doi.org/10.1016/S0277-3791(01)00078-6

32. Gualtieri L., Glushkova O. Y., Brigham-Grette J. (2000). Evidence for restricted ice extent during the last glacial maximum in the Koryak Mountains of Chukotka, far eastern Russia // GSA Bulletin. Vol. 112 P. 1106-1118.

33. https://doi.org/10.1130/0016-7606(2000)112<1106:EFRIED>2.0.CO;2

34. Heyman J., Applegate P. J., Blomdin R. et al. (2016). Boulder height – exposure age relationships from a global glacial 10Be compilation // Quaternary Geochronology. Vol. 34. P. 1-11.

35. https://doi.org/10.1016/j.quageo.2016.03.002

36. Heyman J., Stroeven A. P., Harbor J. M. et al. (2011). Too young or too old: Evaluating cosmogenic exposure dating based on analysis of compiled boulder exposure ages // Earth and Planetary Science Letters. Vol. 302. P. 71-80. https://doi.org/https://doi.org/10.1016/j.epsl.2010.11.040

37. Hidy A. J., Gosse J. C., Froese D. G. et al. (2013). A latest Pliocene age for the earliest and most extensive Cordilleran Ice Sheet in northwestern Canada // Quaternary Science Reviews. Vol. 61. P. 77-84. https://doi.org/10.1016/j.quascirev.2012.11.009

38. Hughes P. D., Gibbard P. L., Ehlers J. (2013). Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM) // Earth-Science Reviews. Vol. 125. P. 171-198. https://doi.org/10.1016/j.earscirev.2013.07.003

39. Ivy-Ochs S., Kerschner H., Reuther A. et al (2008). Chronology of the last glacial cycle in the European Alps // Journal of Quaternary Science. Vol. 23. № 6-7. P. 559-573.

40. https://doi.org/10.1002/jqs.1202

41. Jakobsson M., Nilsson J., Anderson L. et al. (2016). Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation // Nature Communication. Vol. 7. P. 10365.

42. https://doi.org/10.1038/ncomms10365

43. Jansen J. D., Knudsen M. F., Andersen J. L. et al. (2019). Erosion rates in Fennoscandia during the past million years // Quaternary Science Reviews. Vol. 207. P. 37-48. https://doi.org/10.1016/j.quascirev.2019.01.010

44. Kaufman D. S., Manley W. F. (2004). Pleistocene Maximum and Late Wisconsinan glacier extents across Alaska, U.S.A // Developments in Quaternary Sciences. Vol. 2. P. 9-27.

45. Krinner G., Diekmann B., Colleoni F. et al. (2011). Global, regional and local scale factors determining glaciation extent in Eastern Siberia over the last 140,000 years // Quaternary Science Reviews. Vol. 30. № 7-8 P. 821-831. https://doi.org/10.1016/j.quascirev.2011.01.001

46. Lambeck K., Rouby H., Purcell A. et al. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene // Proceedings of the National Academy of Sciences U S A. Vol. 111. № 43. P. 15296-15303. https://doi.org/10.1073/pnas.1411762111

47. Licciardi J. M., Pierce K. L. (2018). History and dynamics of the Greater Yellowstone Glacial System during the last two glaciations // Quaternary Science Reviews. Vol. 200. P. 1-33. https://doi.org/10.1016/j.quascirev.2018.08.027

48. Lifton N., Sato T., Dunai T. J. (2014). Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes // Earth and Planetary Science Letters. Vol. 386. P. 149-160. https://doi.org/10.1016/j.epsl.2013.10.052

49. Lisiecki L. E., Raymo M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records // Paleoceanography. Vol. 20. Iss. 1. PA1003.

50. https://doi.org/10.1029/2004pa001071

51. Löfverström M., Caballero R., Nilsson J. et al. (2014). Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle // Climate of the Past. Vol.10. № 4. P. 1453-1471. https://doi.org/10.5194/cp-10-1453-2014

52. Margold M., Jansen J. D., Gurinov A. L. et al. (2016). Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum // Quaternary Science Reviews. Vol. 132. P. 161-174. https://doi.org/10.1016/j.quascirev.2015.11.018

53. Morin P., Porter C., Cloutier M. et al. (2016). ArcticDEM; a publically available, high resolution elevation model of the Arctic. EGU General Assembly, held 17-22 April, in Vienna Austria, id. EPSC2016-8396.

54. Niessen F., Hong J. K., Hegewald A. et al. (2013). Repeated Pleistocene glaciation of the East Siberian continental margin // Nature Geoscience. Vol. 6. №10. P. 842-846. https://doi.org/10.1038/ngeo1904

55. Putkonen J., O’Neal M. (2006). Degradation of unconsolidated quaternary landforms in the western North America // Geomorphology. Vol. 75. P. 408-419.

56. https://doi.org/10.1016/j.geomorph.2005.07.024

57. Putkonen J., Swanson T. (2003). Accuracy of cosmogenic ages for moraines // Quaternary Research. Vol. 59. № 2. P. 255-261. https://doi.org/10.1016/s0033-5894(03)00006-1

58. Siegert M. J., Marsiat I. (2001). Numerical reconstructions of LGM climate across Eurasian Arctic // Quaternary Science Reviews. Vol. 20. P. 1595-1605.

59. https://doi.org/10.1016/S0277-3791(01)00017-8

60. Simms A. R., Lisiecki L., Gebbie G. et al. (2019). Balancing the last glacial maximum (LGM) sea-level budget // Quaternary Science Reviews. Vol. 205. P. 143-153. https://doi.org/10.1016/j.quascirev.2018.12.018

61. Stauch G., Gualtieri L. (2008). Late Quaternary glaciations in northeastern Russia // Journal of Quaternary Science: Published for the Quaternary Research Association. Vol. 23. No. 6-7. P. 545-558. https://doi.org/10.1002/jqs.1211

62. Stauch G., Lehmkuhl F. 2010. Quaternary glaciations in the Verkhoyansk Mountains, Northeast Siberia // Quaternary Research. Vol. 74. № 1. P. 145-155. https://doi.org/10.1016/j.yqres.2010.04.003

63. Stauch G., Lehmkuhl F., Frechen M. 2007. Luminescence chronology from the Verkhoyansk Mountains (North-Eastern Siberia) // Quaternary Geochronology. Vol. 2. № 1-4. P. 255-259. https://doi.org/10.1016/j.quageo.2006.05.013

64. Svendsen J. I., Alexanderson H., Astakhov V. I. et al. (2004). Late Quaternary ice sheet history of northern Eurasia // Quaternary Science Reviews. Vol. 23. № 11-13. P. 1229-1271.

65. https://doi.org/10.1016/j.quascirev.2003.12.008

66. Toucanne S., Soulet G., Freslon N. et al. (2015). Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate // Quaternary Science Reviews. Vol. 123. № 113-133. https://doi.org/10.1016/j.quascirev.2015.06.010

67. Wagner, G. (1988). Age Determination of Young Rocks and Artifacts. Springer, 466 p.

68. Ward B. C., Bond J. D., Gosse J. C. 2017. Evidence for a 55–50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada // Quaternary Research. Vol. 68. № 1. P. 141-150. https://doi.org/10.1016/j.yqres.2007.04.002


Supplementary files

Review

For citations:


Arzhannikov S.G., Arzhannikova A.V., Chebotarev A.A., Torgovkin N.V., Semikolennykh D.V., Lukyanycheva M.S., Kurbanov R.N. Experience of applying the cosmogenic dating method (10Be) to assess the age and scale of the Pleistocene Glaciation in North-Eastern Siberia (based on the example of glacier complexes of the Chersky Ridge). Geomorfologiya i Paleogeografiya. 2024;55(3):53-72. (In Russ.) https://doi.org/10.31857/S2949178924030039. EDN: PMDUGC

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)