The middle–late Holocene climatic fluctuations recorded in sedimentary sequence of Lake Geographensee, Fildes Peninsula (King George Island, West Antarctica)
https://doi.org/10.31857/S2949178924030082
EDN: PLFHFC
Abstract
The article focuses on the paleoclimatic reconstruction of Holocene environmental changes. To address this issue, a study of the bottom sediments of Lake Geographensee, located on the Fildes Peninsula, King George Island, West Antarctica, was conducted. The lake, located above the maximum Holocene marine transgression limit, preserves an undisturbed sediment record spanning the last 8500 cal. yr BP. The results of lithological, lossonignition, grain size, diatom, and geochemical analyses, along with statistical data processing and radiocarbon chronology of the bottom sediments, are presented. The study allows to identify significant and minor stages of climate change. A prominent warming occurred between ca. 4800–3400 cal. yr BP. Minor warming intervals were identified at ca. 8500–8000 cal. yr BP, ca. 5600–5300 cal. yr BP, ca. 5130–4800 cal. yr BP, ca. 3400–2400 cal. yr BP, and ca. 1200–800 cal. yr BP. A notable cooling stage transpired at ca. 7500–5600 cal. yr BP, with a peak cold period around 7300–7000 cal. yr BP, and possibly at ca. 1800–1200 cal. yr BP. Minor relative cooling phases took place during next periods: ca. 8000–7500 cal. yr BP, ca. 5300–5130 cal. yr BP, and ca. 2400–1800 cal. yr BP. Additionally, shortterm relative cooling and warming are suggested to have occurred during the period ca. 800–600 cal. yr BP. Taking into account the absence of suitable glaciers for obtaining the ice core for paleoclimatic records in the considered maritime Antarctic region, this paleolimnological study provides a foundation for broader understanding of the Holocene climate change in the West Antarctica.
About the Authors
S. R. VerkulichRussian Federation
Yu. A. Kublitskiy
Russian Federation
P. A. Leontev
Russian Federation
Z. V. Pushina
Russian Federation
A. E. Shatalova
Russian Federation
M. A. Kulkova
Russian Federation
A. A. Tyurina
Russian Federation
H. Evangelista
Brazil
D. A. Subetto
Russian Federation
References
1. Alyokin O.A. (1970) Basics of hydrochemistry. Hydrometeoizdat: Leningrad, Russia. 444 p. (in Russ.).
2. Barion P.H., Roberts S.J., Spiegel C. et al. (2023) Holocene glacier readvances on the Fildes Peninsula, King George Island (Isla 25 de Mayo), NW Antarctic Peninsula. The Holocene. (submitted)
3. Bentley M.J. (1999) Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews. Vol. 18(14). P. 1569 –1595. https://doi.org/10.1016/S0277-3791(98)00118-8
4. Björck S., Håkansson H., Zale R. et al. (1991) A Late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with paleoclimatic implications. Antarctic Science. Vol. 3 (1). P. 61–72. https://doi.org/10.1017/S095410209100010X
5. Bromwich D. H., Nicolas J. P., Monaghan A. J. et al. (2012) Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience. Vol. 6(2). P. 139–145. https://doi.org/10.1038/ngeo1671
6. Croudace I. W., Rothwell R. G. (Eds.). (2015) Micro-XRF Studies of Sediment Cores. Springer. 656 p. https://doi.org/10.1007/978-94-017-9849-5
7. Dean W.E. (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research. No. 44. P. 242–248. https://doi.org/10.1306/74d729d2-2b21-11d7-8648000102c1865d
8. Hodgson. D.A., Abram N., Anderson J. et al. (2009) Antarctic climate and environment history in the pre-instrumental period. In: Antarctic Climate Change and the Environment, Turner J., Convey P., Di Prisco G. et al. (Eds.). Scientific Committee for Antarctic Research, Cambridge. P. 115–182.
9. Hodgson D.A., Doran P.T., Roberts D. et al. (2004) Paleolimnological studies from the Antarctic and Subantarctic islands. In: Long-term environmental change in Arctic and Antarctic lakes, Pienitz, R., Douglas, M.S.V., Smol, J.P. (Eds.). Springer. The Netherlands. P. 419–474. https://doi.org/10.1007/978-1-4020-2126-8_14
10. Howat I., Porter C., Noh M-J. et al. (2022) The Reference Elevation Model of Antarctica – Mosaics, Version 2. Harvard Dataverse. V1. https://doi.org/10.7910/DVN/EBW8UC
11. Jousé A.P., Muchina V.V., Kozlova O.G. (1969) Diatoms and silicoflagellates in the surface sediments of the Pacific Ocean. In: Tikhii okean: Mikroflora i mikrofauna v sovremennykh osadkakh Tikhogo okeana. Moscow: Nauka (Publ.). P. 7–47 (in Russ.).
12. Juggins, S. (2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Department of Geography, University of Newcastle, Newcastle upon Tyne.
13. Kopalová, K., Van de Vijver B. (2013) Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Islands. Antarctic Science. Vol. 25 (2). P. 239–253. https://doi.org/10.1017/S0954102012000764
14. Lüning, S., Galka M., Vahrenholt F. (2019) The Medieval Climate Anomaly in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 532. P. 109251. https://doi.org/10.1016/j.palaeo.2019.109251.
15. Martinez-Macchiavello J.C., Tatur A., Servant-Vildary S. et al. (2004) Holocene environmental change in a marine-estuarine-lacustrine sediment sequence, King George Island, South Shetland Islands. Antarctic Science. Vol. 8 (4). P. 313–322. https://doi.org/10.1017/S095410209600048X
16. Matthies D., Mäusbacher, R., Storzer D. (1990) Deseption Island tephra: a stratigraphical marker for limnic and marine sediments in Bransfield Strait area, Antarctica. Zeitshrift fur Geologie und Palaontologie. Vol. 1. P. 153–165.
17. Mäusbacher R., Muller J., Schmidt R. (1989) Evolution of postglacial sedimentation in Antarctic lakes (King Georg Island). Zeitschrift ffi Geomorphologie N.F. Vol. 33. Iss. 2. P. 219–234.
18. Mavlyudov B.R. (2022) Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica. Led i Sneg. Vol. 62. No. 3. P. 325–342. (in Russ.). https://doi.org/10.31857/S2076673422030135
19. Microsoft Bing – Maps [Electronic data]. Access way: https://www.bing.com/maps/ (access date: 25.01.2024).
20. Minyuk P.S., Borkhodoev V.Y., Wennrich V. Inorganic geochemistry data from Lake El’gygytgyn sediments: Marine isotope stages 6–11. Clim. Past. Vol. 10. No.2. P. 467–485. https://doi.org/10.5194/cp-10-467-2014
21. Polishchuk K.V., Verkulich S.R., Ezhikov I.S. et al. (2016) Postglacial relative sea level changes at Fildes Peninsula, King George Island (West Antarctic). Led i Sneg. Vol. 56 No. 102. P. 93–102. (in Russ.). https://doi.org/10.15356/2076-6734-2013-1-111-117
22. Priddle J., Heywood R.B. (1980) Evolution of Antarctic lake ecosystems. In: Ecology in the Antarctic, Bonner, W.N.; Berry R.J. (Eds.). Academic Press, London. P. 51–66.
23. Raimer P. J., Austin W. E. N., Bard E. et al. (2020) The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. Vol. 62. No. 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
24. Ramsey C.B., Lee S. (2013) Recent and planned developments of the program OxCal. Radiocarbon. Vol. 55. No. 2. P. 720–730. https://doi.org/10.1017/S0033822200057878
25. Roberts S.J., Monien P., Foster L.C. et al. (2017) Past penguin colony responses to explosive volcanism on the Antarctic Peninsula. Nature Communications. No. 8. Article number: 14914. https://doi.org/10.1038/ncomms14914
26. Rückamp, M., Braun M., Suckro S. (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change. No. 79. P. 99–109. https://doi.org/10.1016/j.gloplacha.2011.06.009
27. Schmidt R., Mäusbacher R., Müller J. (1990) Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). Journal of Paleolimnology. No. 3. P. 55–74.
28. Shevnina E., Kourzeneva E. (2017) Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A. Vol. 69. P. 1317202. https://doi.org/10.1080/16000870.2017.1317202
29. Simonov I.M. Physiographic characteristics of the Fildes Peninsula. (1975) Antarktika: Doklady komissii (Antarctic: Reports to Сomission). No. 14. P. 128–135. (in Russ.).
30. Skorospekhova T.V., Fedorova I.V., Chetverova A.A. et al. (2016) Characteristic of hydrological regime on Fildes Peninsula (King George Island, West Antarctica). Problemy Arktiki i Antarktiki. No. 2 (108). P. 79–91. (in Russ.).
31. Steig E.J., Schneider D.P., Rutherford S.D. et al. (2009) Warming of the Antarctic Ice-Sheet surface since the 1957 International Geophysical Year. Nature. No. 457. 459–462. https://doi.org/10.1038/nature07669
32. Sterken M., Verleyen E., Jones V.J. et al. (2015) An illustrated and annotated checklist of freshwater diatoms (Bacillariophyta) from Livingston, Signy and Beak Island (Maritime Antarctic Region). Plant Ecology and Evolution. No. 148 (3). P. 431–455. https://doi.org/10.5091/plecevo.2015.1103
33. Subetto D.A. (2009) Lake bottom sediments: paleolimnological reconstructions. Saint-Petersburg: RGPU im. A.I. Gertsena (Publ.). 343 p. (in Russ.).
34. Tatur A., Del Valle R., Barczuk A. et al. (2004) Records of Holocene environmental changes in terrestrial sedimentary deposits on King George Island, Antarctica: a critical review. Ocean and Polar Research. No. 26 (3). P. 531–537. https://doi.org/10.4217/OPR.2004.26.3.531
35. Vaasma T. (2008) Grain-size analysis of lacustrine sediments: a comparison of pre-treatment methods. Estonian Journal of Ecology. No. 57(4). P. 231–243. https://doi.org/10.3176/eco.2008.4.01
36. Van de Vijver B., Frenot Y., Beyens L. (2002) Freshwater Diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica. No. 46. 412 p.
37. Van de Vijver B., Sterken M., Vyverman W. et al. (2010) Four new non-marine diatom taxa from the subantarctic and Antarctic regions. Diatom Research. No. 25 (2). P. 431–443.
38. Vaughan D.G., Marshall G.J., Connolley et al. (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change. Vol. 60. P. 243–274. https://doi.org/10.1023/A:1026021217991
39. Verkulich S.R. (2022) Climate, sea level and glaciation changes in the marginal zone of Antarctica during the last 50000 years. Kriosfera Zemli (Earth’s Cryosphere). No. 26(2). P. 3–24. https://doi.org/10.15372/KZ20220201
40. Verkulich S.R., Pushina Z.V., Tatur A. et al. (2012) Holocene environmental changes in the Fildes Peninsula, King George Island (West Antarctica). Problemy Arktiki i Antarktiki. No. 3 (93). P. 17–27. (in Russ.).
41. Watcham E.P., Bentley M.J., Hodgson D.A. et al. (2011) A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews. No. 30. P. 3152–3170. https://doi.org/10.1016/j.quascirev.2011.07.021
Supplementary files
Review
For citations:
Verkulich S.R., Kublitskiy Yu.A., Leontev P.A., Pushina Z.V., Shatalova A.E., Kulkova M.A., Tyurina A.A., Evangelista H., Subetto D.A. The middle–late Holocene climatic fluctuations recorded in sedimentary sequence of Lake Geographensee, Fildes Peninsula (King George Island, West Antarctica). Geomorfologiya i Paleogeografiya. 2024;55(3):146-163. https://doi.org/10.31857/S2949178924030082. EDN: PLFHFC