Preview

Geomorfologiya i Paleogeografiya

Advanced search

The loess-soil sequence of the Central Ciscaucasia: chronostratigraphy, composition, and sedimentation conditions during the Late Neopleistocene

https://doi.org/10.31857/10.31857/S2949178925020108

EDN: GQIXZR

Abstract

The study presents the results of sedimentological investigation of the core recovered from from the Pervomayskaya-1 (Pm-1) borehole, which revealed the most complete structure of the upland loess-soil series (LSS) in the central Pre-Caucasus. The borehole reached a depth of 13.8 m. Luminescence dating for two samples from the core yielded ages of 62±3 and 102±7 thousand years, attributing the entire studied sequence to the Upper Neopleistocene. Lithostratigraphic units were identified based on macroscopic core examination and geochemical analyses. The Mezin pedocomplex (13.8–9.1 m, MIS 5) consisting of three paleosols was identified at the base of the section. Above it lies a horizon of Valdai loess (9.1–1.2 m, MIS 4–2) of substantial thickness with weak signs of interstadial pedogenesis in its middle part. The section is capped by a Holocene chernozem (1.2–0.0 m, MIS 1) showing signs of anthropogenic transformation in its upper profile. The LSS structure revealed in the Pm-1 core shows stratigraphic unity with previously dated reference sections and boreholes of the Pre-Caucasus LSS: Beglitsa (Bg), Vorontsovka-4 (V-4), Sladkaya Balka-1 (Sb-1), and Otkaznoye-20 (Ot-20). Moreover, the Pm-1 column fits within the main trend of increasing loess thickness and grain size from west to east across the Pre-Caucasus. For the Pm-1 and Ot-20 columns, consistent variations in magnetic susceptibility and grain size were identified. Using these consistent variations as chronostratigraphic markers allowed for a more detailed depth-age model for Pm-1. Based on this model, estimates of loess accumulation rates for the Late Neopleistocene and Holocene were calculated: maximum rates (15.9–17.5 cm/thousand years) correspond to the interval of 36–16 thousand years ago; elevated rates (11.4–12.5 cm/thousand years) align with the interval of 80–40 thousand years ago; low rates (9.1–10.4 cm/thousand years) were recorded in the interval of 128–81 thousand years ago; minimal rates (6.0–6.6 cm/thousand years) correspond to the interval of 13–5 thousand years ago. The intensity of loess accumulation in Pm-1 shows consistency with the most complete LSSs of Eastern Europe, as well as with the mineral dust concentration in Greenland ice core NGRIP.

About the Authors

N. V. Sychev
Institute of Geography RAS, Moscow
Russian Federation


E. A. Konstantinov
Institute of Geography RAS, Moscow
Russian Federation


A. L. Zakharov
Institute of Geography RAS, Moscow
Russian Federation


References

1. Atlas Stavropol'skogo kraya (Atlas of the Stavropol Territory). Main Directorate of Geodesy and Cartography under the Council of Ministers of the USSR. Moscow. 1968. 40 p. (in Russ.)

2. Balaev L.G., Tsarev P.V. (1964) Lessovyye porody Tsentralnogo i Vostochnogo Predkavkazya (Loess rocks of the Central and Eastern Ciscaucasia.) Nauka (Publ.). 246 p. (in Russ.)

3. Bolikhovskaya N.S. (1995) Evolyutsiya lessovo-pochvennoy formatsii Severnoy Yevrazi (Evolution of the loess-soil formation of Northern Eurasia) Moscow: MGU (Publ.) 270 p. (in Russ.)

4. Velichko A.A. (2009) Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva Severnogo polushariya. Pozdniy pleystotsen golotsen. Atlas-monografiya. (Paleoclimates and paleolandscapes of the extratropical space of the Northern Hemisphere. Late Pleistocene-Holocene. Atlas-monograph.) Moscow.: Geos (Publ.) 261 p. (in Russ.)

5. Velichko A.A., Katto N.R., Tesakov A.S., Titov V.V., Morozova T.D., Semenov V.V., Timireva S.N., Kononov Yu.M. (2010) Osnovnyye podkhody k khrono-stratigraficheskomu raschleneniyu lossovo-pochvennoy formatsii Vostochnogo Priazovya. (Basic approaches to the chrono-stratigraphic division of the loess-soil formation of the Eastern Azov region). In: Sovremennoye sostoyaniye i tekhnologii monitoringa aridnykh i semiaridnykh ekosistem yuga Rossii. Rostov-on-Don.: p. 52-64. (in Russ.)

6. Velichko A.A., Morozova T.D., Borisova O.K., Timireva S.N., Semenov V.V., Kononov Yu.M., Titov V.V., Tesakov A.S., Konstantinov E. .A., Kurbanov R.N. (2012). Development of the Steppe Zone in Southern Russia Based on the Reconstruction from the Loess-Soil Formation in the Don-Azov Region. in doklady earth sciences. Vol. 445. No. 4. P. 464-464 DOI: 10.1134/S1028334X12080107

7. Velichko A.A., Morozova T.D. (2015) Osnovnyye cherty pochvoobrazovaniya v pleystotsene na Vostochno-Yevropeyskoy ravnine i ikh paleogeograficheskaya interpretatsiya. (Main features of soil formation in the Pleistocene on the East European Plain and their paleogeographic interpretation) In: Evolyutsiya pochv i pochvennogo pokrova. Teoriya, raznoobraziye prirodnoy evolyutsii i antropogennykh transformatsiy pochv. Moscow: GEOS (Publ.) p. 321-337. (in Russ.)

8. Velichko A.A., Borisova O.K., Zakharov A.L., Kononov Yu.M., Konstantinov E.A., Kurbanov R.N., Morozova T.D., Panin P.G., Timireva S. N. (2017) Smena landshaftnykh obstanovok na yuge Russkoy ravniny v pozdnem pleystotsene po rezul'tatam issledovaniya lossovo-pochvennoy serii Priazov'ya. (Change of landscape settings in the south of the Russian Plain in the Late Pleistocene based on the results of a study of the loess-soil series of the Azov region). Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya. No. 1. p. 74-83. (in Russ.) https://doi.org/10.15356/0373-2444-2017-1-74-83

9. Galai B.F. (1992) Litogenez i prosadochnost' eolovykh lossov (na primere Tsentral'nogo Predkavkaz'ya). (Lithogenesis and subsidence of aeolian loess (on the example of Central Ciscaucasia)). Doctor of science thesis. Moscow: Moscow State University. 38 p. (in Russ.)

10. Galai B.F., Serbin V.V., Plakhtyukova V.S., Galai O.B. (2016) Geneticheskiy analiz pokrovnykh suglinkov g. Stavropolya (Genetic analysis of cover loams in Stavropol). Nauka. Innovatsii. Tekhnologii. No. 1. p. 93-106. (in Russ.)

11. Zakharov A.L., Konstantinov E.A. (2019) Stroyeniye krupnykh zapadin lossovykh mezhdurechiy vostochnogo Priazov'ya (na primere «Chervonoy padi») (The structure of large depressions in the loess interfluves of the eastern Azov region (using the example of “Chervonaya Pad”)). Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya. No. 4. p. 85-96. (in Russ.) https://doi.org/10.31857/S2587-55662019485-96

12. Konstantinov E. A., Mazneva E. A., Sychev N. V., Zakharov A. L., Filippova K. G. (2022) Variability in the structure and composition of the Upper Quaternary loess of Ciscaucasia (south of the European part of Russia). Geomorfologiya. Vol. 53. No. 3. pp. 107-116. DOI: 10.31857/S0435428122030075

13. Konstantinov E.A., Zakharov A.L., Selezneva E.V., Filippova K.G. (2023). Morfometricheskiy analiz krupnozapadinnogo rel'yefa na yuge Vostochno-Yevropeyskoy ravniny. (Morphometric analysis of large-west relief in the south of the East European Plain). Geomorfologiya i paleogeografiya. Vol. 54. No. 1. P. 99-111. (in Russ.) https://doi.org/10.31857/S2949178923010073

14. Trofimov V.T. (Ed.) Opornyye inzhenerno-geologicheskiye razrezy lessovykh porod Severnoy Yevrazii. (Reference engineering-geological sections of loess rocks of Northern Eurasia). (2008) Moscow: KDU (Publ.). 315 p. (in Russ.)

15. Ryskov Ya. G., Oleinik, S. A., Ryskova, E. A., Morgun, E. G. (2007) Izotopnyy sostav sery sul'fatov lossov Predkavkaz'ya i smezhnykh territoriy kak indikator proiskhozhdeniya soley (Isotopic composition of sulfur in loess sulfates in Ciscaucasia and adjacent territories as an indicator of the origin of salts). Pochvovedeniye. No. 4. p. 418-427 (in Russ.)

16. Sychev N.V., Konstantinov, E.A., Zakharov, A.L. Frechen M., Tsukamoto S. (2022) New data on the geochronology of the Upper Quaternary loess of the Terek-Kuma lowland. Moscow: No. 22. p. 25-45 DOI: 10.31857/S0024497X22040073

17. Sychev N.V. (2023) Paleogeograficheskiye obstanovki formirovaniya verkhnechetvertichnykh lossovo-pochvennykh seriy Predkavkaz'ya. (Paleogeographical settings for the formation of the Upper Quaternary loess-soil series of Ciscaucasia). Phd thesis. Moscow: IGRAS. 27 p. (in Russ.)

18. Udartsev V.P., Bolikhovskaya N.S., Virina E.I. (1989). Opornyye razrezy, khronostratigrafiya i paleogeografiya lossovykh tolshch Predkavkazskoy lossovoy oblasti. (Reference sections, chronostratigraphy and paleogeography of loess strata of the Cis-Caucasian loess region.) In: Inzhenernaya geologiya lossovykh porod. Vol. 2. p. 102-103. (in Russ.)

19. Fedorovich B.A. (1960). Voprosy proiskhozhdeniya lossa v svyazi s usloviyami yego rasprostraneniya v Yevrazii. (Questions of the origin of loess in connection with the conditions of its distribution in Eurasia). In: Proiskhozhdeniye peschanogo rel'yefa i lossa. Moscow: Nauka. p. 96-117. (in Russ.)

20. Urusevskaya I.S. (Ed). (2009). Tsifrovaya versiya Karty pochvenno-ekologicheskogo rayonirovaniya Rossiyskoy Federatsii masshtaba 1:8 000 000 (Digital version of the Map of soil-ecological zoning of the Russian Federation at a scale of 1:8,000,000)

21. Yanina T.A., Svitoch A.A., Kurbanov R.N., Murray A.S., Tkach N.T., Sychev N.V. (2017). Opyt datirovaniya pleystotsenovykh otlozheniy Nizhnego Povolzh'ya metodom opticheski stimulirovannoy lyuminestsentsii. (Experience in dating Pleistocene deposits of the Lower Volga region using optically stimulated luminescence). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 1. p. 20−28. (in Russ.)

22. Astakhov V., Pestova L., Shkatova V. (2022) Loessoids of Russia: Varieties and distribution. Quaternary International. Vol. 620. P. 24-35. https://doi.org/10.1016/j.quaint.2021.01.005

23. Antoine P., Rousseau D.D., Moine O., Kunesch S., Hatté C., Lang A., Tissoux H., Zöller L. (2009) Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews. Vol. 28. No. 25-26. P. 2955-2973. https://doi.org/10.1016/j.quascirev.2009.08.001

24. Banerjee S.K., Hunt C.P., Liu X.M. (1993) Separation of local signals from the regional paleomonsoon record of the Chinese Loess Plateau: A rock‐magnetic approach. Geophysical Research Letters. Vol. 20. No. 9. P. 843-846.

25. Blaauw M., Christen J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. No. 3. P. 457-474 DOI: 10.1214/11-BA618

26. Blott S. J., Pye K. (2012). Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology. Vol. 59. No. 7. P. 2071-2096. https://doi.org/10.1111/j.1365-3091.2012.01335.x

27. Bosq M., Kreutzer S., Bertran P., Lanos P., Dufresne P., Schmidt, C. (2023). Last Glacial loess in Europe: luminescence database and chronology of deposition //Earth System Science Data Discussions. Vol. 2023. P. 1-31. https://doi.org/10.5194/essd-15-4689-2023

28. Chen J., Stevens T., Yang T.B., Qiang M., Matishov G.G., Konstantinov E.A., Shi P.H. (2022) Revisiting Late Pleistocene Loess Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Frontiers in Earth Science. Vol. 9. P. 808157 https://doi.org/10.3389/feart.2021.808157

29. Cosentino N.J., Torre G., Lambert F., Albani S., De Vleeschouwer F., Bory, A. (2024) Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types. Earth System Science Data. Vol. 16. No. 2. P. 941-959. https://doi.org/10.5194/essd-16-941-2024

30. Fenn K., Prud’Homme C. (2022) Dust deposits: loess. Treatise on Geomorphology. P. 320-365. https://doi.org/10.3389/feart.2021.808157

31. Frechen M., Oches E. A., Kohfeld K. E. Loess in Europe—mass accumulation rates during the Last Glacial Period. (2003). Quaternary science reviews. Т. 22. – №. 18-19. – С. 1835-1857.

32. Haase D., Fink J., Haase G., Ruske R., Pécsi M., Richter H., Jäger K.D. (2007) Loess in Europe − its spatial distribution based on a European Loess Map, scale 1: 2,500,000. Quaternary Science Reviews. Vol. 26. No. 9-10. P. 1301-1312. https://doi.org/10.1016/j.quascirev.2007.02.003

33. Heller F., Liu T. (1984). Magnetism of Chinese loess deposits. Geophysical Journal International. Vol. 77. No. 1. P. 125-141. https://doi.org/10.1111/j.1365-246X.1984.tb01928.x

34. Konstantinov E.A., Velichko A.A., Kurbanov R.N., Zakharov A.L. (2018) Middle to Late Pleistocene topography evolution of the North-Eastern Azov region. Quaternary International. Vol. 465. P. 72−84. https://doi.org/10.1016/j.quaint.2016.04.014

35. Konstantinov, E. A., Zakharov, A. L., Sychev, N. V., Mazneva, E. A., Kurbanov, R. N., & Morozova, P. A. (2022). Loess Accumulation in the Southern Part of European Russia at the End of the Quaternary Period. Herald of the Russian Academy of Sciences.Vol. 92. No. 3. P. 342-351. 10.1134/S1019331622030108

36. Kukla, G. (1978). The classical European glacial stages: correlation with deep-sea sediments. Transactions of the Nebraska Academy of Sciences- Vol. 6. P. 57-93

37. Laag C., Lagroix F., Kreutzer S., Chapkansk, S., Zeeden C., Guyodo Y. (2023) Measuring and evaluating colorimetric properties of samples from loess-paleosol sequences. MethodsX. Vol. 10. P. 102159. https://doi.org/10.1016/j.mex.2023.102159

38. Liang Y., Yang T.B., Velichko A.A., Zeng, B., Shi P.H., Wang L.D., He Y., Chen J., Chen, Y. (2016) Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since marine isotope stage 11. Journal of Mountain Science. Vol. 13. P. 985-999. DOI: 10.1007/s11629-015-3738-9

39. Lisiecki L.E., Raymo M.E. (2005) A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. Vol. 20. No. 1. P. 1-17. https://doi.org/10.1029/2004PA001071

40. Maher B.A., Thompson R. (1991) Mineral magnetic record of the Chinese loess and paleosols. Geology. Vol. 19. No. 1. P. 3-6. DOI: 10.1130/0091-7613(1991)019<0003:MMROTC>2.3.CO;2

41. Maher B. A., Thompson R. (1992) Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research. Vol. 37. No. 2. P. 155-170. https://doi.org/10.1016/0033-5894(92)90079-X

42. Maher B., Thompson R., Liu X., Bloemendal J., Rolph T., Verosub K., Fine P., Singer M., TenPas J. (1994.) Pedogenesis and paleoclimate: interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comment. GEOLOGY-BOULDER-. Vol. 22. P. 857-857. https://doi.org/10.1130/0091-7613(1994)022<0857:PAPIOT>2.3.CO;2

43. Maher B. A. (1998.) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 137. No. 1-2. P. 25-54. https://doi.org/10.1016/S0031-0182(97)00103-X

44. Maher B.A., Prospero J.M., Mackie D., Gaiero D., Hesse P.P., Balkanski Y. (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews. Vol. 99. No. 1-2. P. 61-97.

45. Makeev A., Lebedeva M., Kaganova A., Rusakov A., Kust P., Romanis T., Yanina T., Kurbanov R. (2021). Pedosedimentary Environments in the Caspian Lowland during MIS5 (Srednaya Akhtuba Reference Section, Russia). Quaternary International. Vol. 590. P. 164–180. doi:10.1016/j.quaint.2021.03.015

46. Marković S.B., Stevens T., Kukla G.J., Hambach U., Fitzsimmons K.E., Gibbard P., Svirčev Z. (2015). Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth-Science Reviews. No 148. P. 228-258. https://doi.org/10.1016/j.earscirev.2015.06.005

47. Marković S.B., Stevens T., Mason J., Vandenberghe J., Yang S., Veres D., Lehmkuhl F. (2018) Loess correlations Between myth and reality. Palaeogeography, palaeoclimatology, palaeoecology. Vol. 509. P. 4-23. https://doi.org/10.1016/j.earscirev.2009.12.001

48. Mazneva E., Konstantinov E., Zakharov A., Sychev N., Tkach N., Kurbanov R., Murray A. (2021) Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition. Quaternary International. Vol. 590. P. 146-163. https://doi.org/10.1016/j.quaint.2020.11.039

49. Muhs D.R. (2018) The geochemistry of loess: Asian and North American deposits compared. Journal of Asian Earth Sciences. Vol. 155. P. 81-115. https://doi.org/10.1016/j.jseaes.2017.10.032

50. Panin P.G., Timireva S.N., Morozova T.D., Kononov Y.M., Velichko A.A. (2018) Morphology and micromorphology of the loess-paleosol sequences in the south of the East European plain (MIS 1 MIS 17). Catena. Vol. 168. P. 79-101. https://doi.org/10.1016/j.catena.2018.01.032

51. Panin P., Kalinin P., Filippova K., Sychev N., Bukhonov A. (2023) Paleo-pedological record in loess deposits in the south of the East European plain, based on Beglitsa-2017 section study. Geoderma. Vo. 437. P. 116567. https://doi.org/10.1016/j.geoderma.2023.116567

52. Perić Z.M., Stevens T., Obreht I., Hambach U., Lehmkuhl F., Marković S.B. (2022) Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin. Global and Planetary Change. Vol. 215. P. 78-92. https://doi.org/10.1016/j.gloplacha.2022.103895

53. Ponomareva V., Portnyagin M., Danišík M., Konstantinov E., Zelenin E., Tkach N., Hauff F., Schmitt A., Friedrichs B., Romanyuk B., Guillong M., Kirkland C., Rankenburg K., Müller S., Garbe-Schönberg D. (2023) Distal tephras along the SE European margin date powerful explosive eruptions from the Elbrus volcanic center (Greater Caucasus). Quaternary Science Reviews. Vol. 300. P. 107910 https://doi.org/10.1016/j.quascirev.2022.107910

54. Pye K. (1984) Loess. Progress in Physical Geography. Vol. 8. No. 2. P. 176-217.

55. Pye K. (1995) The nature, origin and accumulation of loess. Quaternary Science Reviews. Vol. 14. No. 7-8. P. 653-667. https://doi.org/10.1016/0277-3791(95)00047-X

56. Simonsen M.F., Baccolo G., Blunier T., Borunda A., Delmonte B., Frei R., Vallelonga P. (2019) East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nature communications. Vol. 10. No. 1. P. 44−60. https://doi.org/10.1038/s41467-019-12546-2

57. Sprafke T., Schulte P., Meyer-Heintze S., Händel M., Einwögerer T., Simon U., Peticzka R., Schafer C., Lehmukuhl F., Terhorst B. (2020) Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quaternary science reviews. Vol. 248. P. 106602. https://doi.org/10.1016/j.quascirev.2020.106602

58. Thiel C., Buylaert J.P., Murray A., Terhorst B., Hofer I., Tsukamoto S., Frechen M. (2011) Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International. Vol. 234. No. 1-2. P. 21-31. https://doi.org/10.1016/j.quaint.2010.05.018

59. Velichko A.A., Morozova T.D., Nechaev V.P., Rutter N.W., Dlusskii K.G., Little E.C., Catto N.R., Semenov V.V., Evans, M.E. (2006) Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia. Quaternary International. Vol. 152. P. 14-30. https://doi.org/10.1016/j.quaint.2005.12.003

60. Velichko A. A., Catto N., Tesakov A. S., Titov V. V., Morozova T. D., Semenov, V. V., Timireva S. N. (2009). Structural specificity of pleistocene loess and soil formation of the southern Russian plain according to materials of Eastern Priazovie. Doklady Earth Sciences. Springer Nature BV. Vol. 429. No. 1. P. 1364. DOI: 10.1134/S1028334X09080273

61. Virina E.I., Faustov S.S., Heller F. (2000) Magnetism of loess-palaeosol formations in relation to soil-forming and sedimentary processes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. Vol. 25. No. 5. P. 475-478. https://doi.org/10.1016/S1464-1895(00)00073-9


Supplementary files

Review

For citations:


Sychev N.V., Konstantinov E.A., Zakharov A.L. The loess-soil sequence of the Central Ciscaucasia: chronostratigraphy, composition, and sedimentation conditions during the Late Neopleistocene. Geomorfologiya i Paleogeografiya. 2025;56(2):323-340. (In Russ.) https://doi.org/10.31857/10.31857/S2949178925020108. EDN: GQIXZR

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1789 (Print)
ISSN 2949-1797 (Online)