Morphogenesis by mass movements in western Andes (Chile)
https://doi.org/10.15356/0435-4281-2013-2-81-96
Abstract
Numerous examples of mass movements on slopes of western Andes and related landforms are analyzed. Regionalization of the country is fulfilled, taking into account climatic and hydrologic factors. 9 regions were distinguished with more or less similar physical-geographical conditions for mass movements’ development. Recommendations are suggested concerning future investigations in the field of mass movements risk under the rising anthropogenic impact.
Keywords
About the Author
J. E. Novoa JerezChile
References
1. Fairbridge R. The Encyclopedia of Geomorphology. Encyclopedia of Earth Sciences Series. New York: Reinhold, 1968, v. III, 1295 p.
2. Whittow J. The Penguin Dictionary of Physical Geography. London: Penguin Books, 1984, 591 p.
3. Allison R., Brunsden D. Some mudslide movement patterns. Earth Surface Processes and Landforms, 1990, v. 15, pp. 297–311.
4. Castro C., Cereceda P., Marzol V. et al. Condiciones geograficas de los procesos aluvionales en las cuencas en torno a la bahia Cumberland, Robinson Crusoe, Archipielago de Juan Fernandez, Chile. Anales Sociedad Chilena de Ciencias Geografi cas, 1995, pp. 231–140.
5. Novoa J., Castillo R., Viada J. Morfogenesis aluvional en ambientes semiaridos. Anales Sociedad Chilena de Ciencias Geograficas, 1999, pp. 88–95.
6. Evans S., Scarascia G., Strom A. et al. Landslides from massive rock slope failure and associated phenomena. Landslides from Massive Rock Slope Failure. NATO Science Series: IV: Earth and Environmental Sciences. Netherlands: Springer, 2006, v. 49, pp. 3–52.
7. Varnes D. Landslide types and processes. Landslides and Engineering Practice. Highway Research Board special report, 1958, v. 29, pp. 20–47.
8. Varnes D. Landslide types and processes. Landslide Analysis and Control. Transportation Research Board Special Report 176. Washington DC: National Academy of Sciences, 1978, pp. 11–33.
9. Flageollet J., Maquaire O., Martin B., Weber D. Landslide and climatic conditions in the Barcelonette and Vars basins (Southern French Alps, France). Geomorphology, 1999, v. 30, pp. 65–78.
10. Jibson R. Use of landslides for paleoseismic analysis. Engineering Geology, 1996, v. 43(4), pp. 291–323.
11. Direccion Meteorologica de Chile. Climas de Chile. 2005. http://www.meteochile.cl/climas/ climas.html.
12. Antinao J., Gosse J. Large rockslides in the Southern Central Andes of Chile (32–34.5?S): tectonic control and significance for Quaternary landscape evolution. Geomorphology, 2009, v. 104, pp. 117–133.
13. Larsen I., Montgomery D., Korup O. Landslide erosion controlled by hillslope material. Nature Geoscience, 2010, v. 3, pp. 247–251.
14. Golubev G. Avalanchas y corrientes de barro en Chile. Informaciones Geograficas, 1966, pp. 31–74.
15. Ruiz M. Situaciones de Riesgo por Movimientos de Masas en Laderas del rio Yeso, Region Metropolitana. Memoria Instituto de Geografia, Pontificia Universidad Catolica de Chile, Santiago, 1983, 76 p.
16. Herrera F. Geomorfologia del sector Nacimiento-Tijeral. Anales Sociedad Chilena de Ciencias Geograficas, 1991, pp. 18–22.
17. Jaque E. Geomorfologia del curso inferior del rio Bio-Bio a la altura de Santa Juana. Anales Sociedad Chilena de Ciencias Geograficas, 1991, pp. 28–35.
18. Hauser A. Remociones en Masa en Chile. SERNAGEOMIN Boletin, 1993, v. 45, 75 p.
19. Quintanilla V. Identifi cacion de procesos y riesgos en ecosistemas andinos del Maipo superior. Anales Sociedad Chilena de Ciencias Geograficas, 1993, pp. 46–52.
20. Subiabre A., Rojas C., Arias P., Cavul M. La Carretera Austral entre caleta Gonzalo y La Junta y sus sectores de riesgo. Anales Sociedad Chilena de Ciencias Geograficas, 1993, pp. 70–73.
21. Subiabre A., Rojas C. Los sectores de riesgo en el area norte del lago Ranco, X Region. Anales Sociedad Chilena de Ciencias Geograficas, 1995, pp. 300–302.
22. Mardones M., Jaque E. Geomorfologia aplicada al ordenamiento del territorio. IV Congreso Internacional Ciencias de la Tierra. Santiago, 1996, pp. 137–165.
23. Ferrando F. Hidrologia y riesgos del gasoducto Mejillones-Paposo: zona arida del Norte de Chile. Anales Sociedad Chilena de Ciencias Geograficas, 1997, pp. 389–403.
24. Sepulveda S., Rebolledo S., Vargas G. Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quaternary International, 2006, v. 158, pp. 83–95.
25. Haug E., Kraal E., Sewall J. et al. Climatic and geomorphic interactions on alluvial fans in the Atacama Desert, Chile. Geomorphology, 2010, v. 121, pp. 184–196.
26. Ferrando F., Moreno H. Contribucion al analisis y prevencion de las amenazas sismicas y volcanicas, y los riesgos asociados. Anales Sociedad Chilena de Ciencias Geograficas, 1995, pp. 254–265.
27. Bravo S. Precipitaciones en la II Region Antofagasta y sus impactos negativos. II Congreso Ciencias de la Tierra. Santiago, 1992, pp. 435–445.
28. Garreaud R., Rutllant J. Analisis meteorologico de los aluviones de Antofagasta y Santiago de Chile en el periodo 1991–1993. Atmosfera, 1996, v. 9, pp. 251–271.
29. Vargas G., Ortlieb L., Rutllant J. Aluviones historicos en Antofagasta y su relacion con eventos El Nin. Oscilacion del Sur. Revista Geologica de Chile, 2000, v. 27(2), pp. 157–176.
30. Mu?oz O. Quebrada de Macul: un factor de desequilibrio fisico en la comuna de La Florida. Revista Geografica de Chile Terra Australis, 1990, v. 43, pp. 103–134.
31. Corvalon N., Kovacic I., Mu?oz O. Quebrada de Macul: el aluvion del 3 de mayo de 1993, causas y consecuencias. Revista Geografica de Chile Terra Australis, 1997, v. 42, pp. 139–167.
32. Hauser A. Flujos aluvionales de 1870 y 1896 ocurridos en la ladera norte del volcan Yates, X Region: su implicancia en la evaluacion de riesgos naturales. Revista Geologica de Chile, 1985, v. 25/26, pp. 125–133.
33. Montgomery D., Balco G., Willett S. Climate, tectonics, and the morphology of the Andes. Geology, 2001, v. 29(7), pp. 579–582.
34. Espinosa G., Hajek E., Fuentes E. Distribucion geografica de los deslizamientos de tierras asociados a desastres em Chile. Ambiente y Desarrollo, 1985, v. 1(2), pp. 81–90.
35. Abele G. Derrumbes de montana y morrenas en los Andes chilenos. Revista de Geografia Norte Grande, 1984, v. 11, pp. 17–30.
36. Paskoff R. Atlas de las Formas del Relieve de Chile. Santiago: Insituto Geografico Militar, 1996. 288 p.
37. Clavero J., Sparks R., Huppert H., Dade W. Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bul. of Volcanology, 2002, v. 64, pp. 40–54.
38. Andrade S., Van Wyk de Vries B. Structural analysis of the early stages of catastrophic stratoVolcano flank-collapse using analogue models. Bul. of Volcanology, 2010, v. 72, pp. 771–789.
39. Pinto L., Hurail G., Sepulveda S., Krop P. A Neogene giant landslide in Tarapaca, northern Chile: a signal of instability of the westernmost Altiplano and palaeoseismicity effects. Geomorphology, 2008, v. 102, pp. 532–541.
40. Strasser M., Schlunegger F. Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the ‘Lluta collapse’, northern Chile. Intern. Journ. of Earth Science, 2005, v. 94, pp. 433–446.
41. Kober F., Schlunegger F., Zeilinger G., Schneider H. Surface uplift and climate change: the geomorphic evolution of at the western escarpment of the Andes of northern Chile between the Miocene and present. Tectonics, Climate and Landscape evolution. GSA Special Paper, 2006, pp. 75–86.
42. Schlunegger F., Zeilinger G., Kounov A. et al. Scale of relief growth in the forearc of the Andes of Northern Chile (Arica latitude, 18.S). Terra Nova, 2006, v. 18, pp. 217–223.
43. Korup O., Densmore A., Schlunegger F. The role of landslides in mountain range evolution. Geomorphology, 2010, v. 120, pp. 77–90.
44. Francis P., Gardeweg M., Ram?rez C., Rothery D. Catastrophic debris avalanche deposit of Socompa Volcano, northern Chile. Geology, 1985, v. 13, pp. 600–603.
45. Naranjo J., Paskoff R. Evolucion cenozoica del piedemonte andino en la Pampa del Tamarugal, norte de Chile (18.–21.S). IV Congreso Geologico Chileno, 1985, v. 4, pp. 149–165.
46. Francis P., Wells G. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bul. of Vulcanology, 1988, v. 50(4), pp. 258–278.
47. Hauser A. Flujos de barro en la zona preandina de la Region Metropolitana: caracteristicas, causas, efectos, riesgos y medidas preventivas. Revista Geologica de Chile, 1985, v. 24, pp. 75–92.
48. Davies T., McSaveney M., Kelfoun K. Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance. Bul. of Volcanology, 2010, v. 72(8), pp. 933–944.
49. Wadge G., Francis P., Ramirez C. The Socompa collapse and avalanche event. Journ. of Volcanology and Geothermal Research, 1995, v. 66 (1), pp. 309–336.
50. Van Wyk de Vries B. A gravitational spreading origin for the Socompa debris avalanche. Journ. of Volcanology and Geothermal Research, 2001, v. 105(3), pp. 225–247.
51. Kelfoun K., Druitt T. Numerical modeling of the emplacement of Socompa rock avalanche, Chile. Journ. of Geophysical Research, 2005, v. 110 (B12), pp. 1–13.
52. Kelfoun K., Druitt T., Van Wyk de Vries B., Guilbaud M. N. Topographic reflection of the Socompa debris avalanche, Chile. Bul. of Volcanology, 2008, v. 70(10), pp. 1169–1187.
53. Sosio R., Crosta G., Hungr O. Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides, 2011, DOI 10.1007/s10346-011-0302-8.
54. Naranjo J., Francis P. High velocity debris avalanche at Lastarria Volcano in the north Chilean Andes. Bul. of Volcanology, 1987, v. 49, pp. 509–514.
55. Legros F. The mobility of long-runout landslides. Engineering Geology, 2002, v. 63 (3–4), pp. 301–331.
56. Stern Ch. Active Andean volcanism: its geologic and tectonic setting. Revista geologica de Chile, 2004, v. 31(2), pp. 161–206.
57. Pe?a H., Coceres F. Analisis del aluvion de mayo de 1985 del rio Manflas, cuenca del rio Copiapo. VIII Congreso Nacional de Ingenieria Hidraulica, 1987, v. 2, pp. 1–14.
58. Conte A. Vulnerabilidad de los valles agricolas Elqui, Limari y Choapa ante Eventos Catastroficos. Memoria Instituto de Geografia, Pontifi cia Universidad Catolica de Chile. Santiago, 1985, 183 p.
59. Mauro A. Sistemas atmosfericos vinculados a extremos meteorologicos y su relacion con desastres naturales ocurridos en Chile Central. Analisis de casos. Revista Geografica de Chile Terra Australis, 1998, v. 43, pp. 23–29.
60. Young G., Zavala H., Wandel J. et al. Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Climatic Change, 2010, v. 98, pp. 245–276.
61. Rivano S., Sepulveda P., Boric R., Espi?eira P. Mapa Geologico de la Hoja Quillota-Portillo (escala 1:250.000), V Region de Valparaiso. Carta geologica de Chile, v. 73. Santiago: Servicio Nacional de Geologia y Mineria, 1993.
62. Welkner D., Eberhardt E., Hermanns R. Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach. Engineering Geology, 2010, v. 114, pp. 278–297.
63. Borde J. Les Andes de Santiago et leur Avant-pays. Burdeos: 1966, 559 p.
64. Naranjo J., Varela J. Flujos de detritos y barro que afectaron el sector oriente de Santiago el 3 de mayo de 1993. Boletin 47. Santiago: Servicio Nacional de Geologia y Mineria, 1996, 42 p.
65. Sepulveda S., Padilla C. Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile. Natural Hazards, 2008, v. 47, pp. 201–215.
66. Armijo R., Rauld R., Thiele R. et al. The west Andean thrust, the San Ramon fault, and the seismic hazard for Santiago, Chile. Tectonics 29,TC2007(2010) doi:10.1029/2008TC002427
67. Lara M., Sepulveda S. Landslide susceptibility and hazard assessment in San Ramon Ravine, Santiago de Chile, from an engineering geological. Approach Environmental Earth Science, 2010, v. 60, pp. 1227–1243.
68. Cassassa G., Marangunic C. The 1987 Rio Colorado rockslide and debris flow, Central Andes, Chile. Bul. Ass. Eng. Geol., 1993, v. 30, pp. 321–330.
69. Hauser A. Rock avalanche and resulting debris flow in Estero Parraguirre and Rio Colorado, Region Metropolitana, Chile, in Catastrophic Landslides: Effects, Occurrence, and Mechanisms (Geol. Soc. Am. Rev. Eng. Geol), 2002, v. 5(15), pp. 135–148.
70. Petrakov D., Chernomorets S., Evans S., Tutubalina O. Catastrophic glacial multi-phase mass movements: a special type of glacial hazard. Advanves in Geosciences, 2008, v. 14, pp. 211–218.
71. Veblen Th., Ashton D. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio, 1978, v. 36(3), pp. 149–167.
72. Andreoli A., Comiti F., Lenzi M. Characteristics, distribution and geomorphic role of large woody debris in a mountain stream of the Chilean Andes. Earth Surface Processes and Landforms, 2007, v. 32, pp. 1675–1692.
73. Davis S., Karzulovic J. Deslizamientos en el valle del rio San Pedro, provincia de Valdivia, Chile. Universidad de Chile, Instituto de Geologia. Publ. 20, 1961, pp. 53–108.
74. Tazieff H. Interpretation des glissements de terrain accompagnant le grand seisme du Chili. Liege: Bul. Soc. Geologique Belge, 1960, pp. 374–384.
75. Watt S., Pyle D., Naranjo J., Mather T. Landslide and tsunami hazard at Yate Volcano, Chile as an example of edifice destruction on strike-slip fault zones. Bul. Volcanology, 2009, v. 71, pp. 559–574.
76. Sepulveda S., Serey A., Lara M. et al. Landslides induced by the April 2007 Aysen Fjord earthquake, Chilean Patagonia. Landslides, 2010, v. 7, pp. 483–492.
77. Delgado J., Garrido J., L?pez-Casado C. et al. On far field occurrence of seismically induced landslides. Engineering Geology, 2011, v. 123, pp. 204–213.
78. Legrand D., Barrientos S., Bataille K. et al. The fluid-driven tectonic swarm of Aysen Fjord, Chile (2007) associated with two earthquakes (Mw=6.1 and Mw=6.2) within the Liquine-Ofqui Fault Zone. Continental Shelf Research, 2011, v. 31, pp. 154–161.
Review
For citations:
Novoa Jerez J.E. Morphogenesis by mass movements in western Andes (Chile). Geomorfologiya. 2013;(2):81-96. (In Russ.) https://doi.org/10.15356/0435-4281-2013-2-81-96